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Announcements

• Foster office hours 11-12pm

• Guest lecture by Fran on Monday
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Recursive Types

Many languages support recursive data types

Java

class Tree {
Tree leftChild, rightChild;
int data;

}

OCaml

type tree = Leaf | Node of tree * tree * int

Simple Types

tree = unit+ int× tree× tree
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Recursive Type Equations

We would like the type tree to satisfy

tree = unit+ int× tree× tree

In other words, we would like tree to be a solution of the equation

α = unit+ int× α× α

However, no such solution exists with the types we have so far...
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Unwinding Equations

Unwinding the equation for tree, we have:

α=unit+ int× α× α

=unit+ int×
(unit+ int× α× α)×
(unit+ int× α× α)

=unit+ int×
(unit+ int×

(unit+ int× α× α)×
(unit+ int× α× α))×

(unit+ int×
(unit+ int× α× α)×
(unit+ int× α× α))

= · · ·
At each level, we have a finite type with variables α and we obtain
the next level by substituting the right-hand side for α
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Infinite Types

If we take the limit of this process, we have an infinite tree

We can think of this as an infinite labeled graph whose nodes are
labeled with the type constructors×,+, int, and unit.

This infinite tree is a solution of our equation, and this is what we
take as the type tree.

More generally, over standard type constructors such as→,×,+,
unit, and int, we can form the set of (finite) types inductively in the
usual way
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Example

For example, the type int → int → int can be viewed as the
labeled tree

int

int

int

→
→

@@

@@

��

��
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Example

A (finite or infinite) expression with only finitely many
subexpressions (up to isomorphism) is called regular

For example, the infinite type

int

int

int

. . .

→
→

→

@@

@@

@@

��

��

��

is regular, since it has only two subexpressions up to isomorphism,
namely itself and int
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µ Types

We can specify infinite solutions to systems of equations using a
finite syntax involving the fixpoint type constructor µ

Given an equation α = τ such that the right-hand side is not α,
there is a unique solution, which is a finite or infinite regular tree

The solution will be infinite if α occurs in τ and will be finite (in fact
it will just be τ ) if α does not occur in τ

We denote this unique solution by µα. τ .

Note that µ acts as a binding operator in type expressions
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Example

To get a tree type satisfying our original equation, we can define

tree ≜ µα.unit+ int× α× α.

...and it is straightforward to extend this to mutually recursive types
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Static Semantics (Equirecursive)

In equirecursive types we take a recursive type to be equal to its
(potentially infinite) unfolding

Formally, since µα. τ is a solution to α = τ , we have

µα. τ = τ{µα. τ/α}.

...and so the typing rules are simple:

Γ ⊢ e : τ{µα. τ/α}
Γ ⊢ e : µα. τ

µ-intro

Γ ⊢ e : µα. τ

Γ ⊢ e : τ{µα. τ/α}
µ-elim

Equivalently, we can just allow substitution of equals for equals
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Isorecursive Types

Another approach is to work with isorecursive types.

Here we do not have any infinite types, but rather the expression
µα. τ is itself a type that is distinct, but isomorphic to τ{µα. τ/α}

The step of substituting µα. τ for α in τ is called unfolding, and the
reverse operation is called folding

The conversion of elements between these two types is
accomplished by explicit fold and unfold operations.

unfoldµα. τ : µα. τ → τ{µα. τ/α}
foldµα. τ : τ{µα. τ/α} → µα. τ
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Static Semantics (Isorecursive)

In the isorecursive view, the typing rules consist of a pair of
introduction and elimination rules for µ-types that explicitly
mention fold and unfold:

Γ ⊢ e : τ{µα. τ/α}
Γ ⊢ fold e : µα. τ

µ-intro

Γ ⊢ e : µα. τ

Γ ⊢ unfold e : τ{µα. τ/α}
µ-elim
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Dynamic Semantics

We also need to augment the operational semantics:

unfold (fold e) → e

Intuitively, to access data in a recursive type µα. τ , we need to
unfold it first; but the only way that values of type µα. τ could
have been created in the first place is via a fold
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Example

Suppose we want to write a program to add a list of numbers

The list type is a recursive type, which we can define as

intlist ≜ µα.unit+ int× α.

Now suppose we want to add up the elements of an intlist This
will be a recursive function, so we would need to take a fixpoint

let sum =
fix (λf : intlist → intlist

λl : intlist. case unfold ℓ of
(λu : unit. 0)

| (λp : int× intlist. (#1 p) + f (#2 p)))
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Encoding Numbers

Now that we have recursive types, we no longer need to take int as
primitive, but we can define it as a recursive type

A natural number is either 0 or a successor of a natural number:

nat ≜ µα.unit+ α

0 ≜ fold (inlnat ())

1 ≜ fold (inrnat 0)

2 ≜ fold (inrnat 1),

The successor function is:

(λx : nat. fold (inrnat x)) : nat → nat.
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Self-Application and Ω

Recall Ω defined as:

ω ≜ λx. xx Ω ≜ ω ω.

We can now give these terms recursive types!

x is used as a function, so it must have a type, say σ → τ

But x is applied to itself, so it must also have type σ

Hence, the type of xmust satisfy the equation σ = σ → τ
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Self-Application and Ω

Putting all these pieces together, the fully typed ω term is:

ω ≜ (λx : µα. (α → τ). (unfold x) x) : (µα. (α → τ)) → τ.

We can also write ω in OCaml:

# type u = Fold of (u -> u);;
type u = Fold of (u -> u)
# let omega = fun x -> match x with Fold f -> f x;;
val omega : u -> u = <fun>
# omega (Fold omega);;
...runs forever until you hit control-c
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Encoding λ-Calculus

With recursive types, we can type everything in the untyped
lambda calculus!

Every λ-term can be applied as a function to any other λ-term,
which leads to the type:

U ≜ µα. α → α

The full translation is as follows

[[x]] ≜ x

[[e0 e1]] ≜ (unfold [[e0]]) [[e1]]

[[λx. e]] ≜ fold λx : U. [[e]].

Note that every untyped term maps to a term of type U.
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