CS4110

Programming Languages & Logics

Lecture 26
Records and Subtyping

3 November 2014

Announcements

e Foster office hours 4-5pm

e Prelim Il conflicts

e Next Thursday: Talk on /ron by Yaron Minsky PhD 02

Records

We have previously seen binary products (pairs of values), which
can be generalized to n-ary products, also called tuples.

Records are a generalization of tuples
We annotate each field with a label drawn from a set £
Example:

{foo = 32, bar = true}

is a record value with an integer field foo and a boolean field bar.

The type of the record value is written
{foo:int, bar:bool}

_...|{/]:e]7...,/n:en}|e./

...|{/1:V],..-,/n:\/n}

—Tr | {/1:7'],...,/n:7—n}

Dynamic Semantics

Eo=..
|{/1 :V],...,//_] :V/'_q,/,':E,/,‘_H =e,-+1,...,/n
£

{/] :V1,...,/n:Vn}./,'—>V,‘

Static Semantics

Viel.n. Tke:n
r|_{/] :e1,...,/n:en}:{/]:7'1,...,/n:7'n}

rl_e:{/1i’7'],..-,/n:7—n}
= e./,‘ZT/

Example

Note that the order of labels is important!

The type of the record value
{lat = —40,long = 175}

{lat:int, long:int},
which is different from
{long:int, lat:int},
the type of the record value
{long = 175, lat = —40}

Subtyping

Definition (Subtype)

71 is a subtype of 7, (written 71 < 73) if @ program can use a value of
type 71 whenever it would use a value of type 7.

If 77 < 7, then 7 is usually referred to as the subtype, and 7, as the
supertype.

M-e:r <7
M-e: 7’

Subsumption

This typing rule says that if e has type 7 and 7 is a subtype of 7/,
then e also has type 7.

Subtyping Relation

One can think of types as describing sets of values that share some
common property. Then type 7 is a subtype of type 7’ is every
value in the set for 7 can be regarded as a value in the set for 7.

The subtype relation is both reflexive and transitive. These
properties are intuitive if we think of subtyping as a subset relation.

<7 TH<T3
S-Refl S-Trans
T<T T <T3

Record Subtyping

We certainly want “width” subtyping...
k>0

{heimy ook o < {him, oo b}

..as well as "depth” subtyping...
Viel.n n<7
{hom, oo ey < b, i}

.. and “permutation” subtyping:
T a permutationon 1..n

{/1 Ty, .,/nZTn} < {/ﬁ(1)17'7r(1), . ,/F(H)ZTF(H)}

Record Subtyping

Putting all three forms of record subtyping together:

Viel.nJelm [I[=L AN 571

S-Record
{her, oot} <im0}

Top Type

It is natural to ask... what is the maximal type with repsect to
subtyping?

Tu=--| T
The T type can be used to model types such as Java's Object.

The subtyping rule for T is as follows:

S-To
T<T P

Z

Sum and Product Subtyping

We can extend the subtyping relation to handle sums and
products, in the obvious way:

T < 7'1’ T < 7'2’
, - S-Product
TI X T < T X1

Function Types

Consider two function types 7, — 7 and 7] — 73.

What subtyping relations between the 7; and 7/ must hold to
ensure that 7y — 7 < 7/ — 75 holds?

"As usual, something funny happens to the left of the arrow”
—John C. Reynolds

Example

Consider the following expression,
G2 N7 = 7. M7 fx.
which has type:

(1] = 7)) =1 — 1
Now suppose we want to supply h: 7y — m t0 G

Suppose that vis a value of type 7. Then G h v will evaluate to h v,
meaning that h will be passed a value of type 7. Since h has type
T — T, we must have 71 < 7

The result type of G h v should be of type 73 according to the type
of G, but h v will produce a value of type 7, as indicated by the
type of h. So we must have 7, < 74

Function Subtyping

Putting these two pieces together, we get the following subtyping
rule for function types:

/ /
7n<nn <7

; > S-Function

T =T <T =T
Note that the subtyping relation between the argument and result
types in the premise are in different directions!

The subtype relation for the result type is in the same direction as
for the conclusion (primed version is the supertype, non-primed
version is the subtype); it is in the opposite direction for the
argument type.

We say that subtyping for the function type is covariant in the
result type, and contravariant in the argument type.

Reference Subtyping

Suppose we have a location / of type 7 ref, and a location /" of type
7’ ref.

What should the relationship be between 7 and 7’ in order to have
7 ref < 7' ref?

Example

Consider the following program R, which takes a location x of type
7’ ref and reads from it.

R £ \x:7'ref. Ix

This has the type 7' ref — 7/. Suppose we give R a location / as an
argument. Then R/ will look up the value stored in /, and return a
result of type 7 (since /is type 7 ref.

Since R is meant to return a result of type 7’ ref, we thus want to
have 7 < 7/.

Example

Now consider the following program W, which takes a location x of
type 7’ ref, a value y of type 7/, and writes y to the location.

WE X T ref A7 . x =y
This program has type 7’ ref — 7/ — 7/,

Suppose we have a value v of type 7/, and consider the expression
Wlv.

This will evaluate to / := v, and since has type 7 ref, it must be the
case that vhas type 7,and so 7" < 7.

This suggests that subtyping for reference types is contravariant!

Reference Subtyping

In fact, subtyping for reference types must be invariant: a reference
type 7 ref is a subtype of 7' ref ifand only if 7 < 77 and 7/ < 7.

/ /
T<71t 7T

S-Ref
Tref < 7'ref

Indeed, it is not hard to see that to be sound, subtyping for all
mutable language constructs must be invariant

Java Arrays

Interestingly, in the Java programming language, mutable arrays
have covariant subtyping!

Suppose that we have two classes Person and Student such that
Student extends Person (that is, Student is a subtype of Person).

Code that only reads from arrays typechecks,

Person[]arr = new Student[] { new Student("Alice”") };
Personp = arr[0];

but the following code, which writes into the array, has some issues:
arr[0] = new Person(“Bob");

Specifically, this generates an ArrayStoreException

