

CS 4110

Programming Languages & Logics

Lecture 26
Records and Subtyping

3 November 2014

Announcements

• Foster office hours 4-5pm

• Prelim II conflicts

• Next Thursday: Talk on Iron by Yaron Minsky PhD ’02

2

Records

We have previously seen binary products (pairs of values), which
can be generalized to n-ary products, also called tuples.

Records are a generalization of tuples

We annotate each field with a label drawn from a set L

Example:
{foo = 32, bar = true}

is a record value with an integer field foo and a boolean field bar.

The type of the record value is written
{foo : int, bar :bool}

3

Syntax

l ∈ L

e ::= · · · | {l1 = e1, . . . , ln = en} | e.l

v ::= · · · | {l1 = v1, . . . , ln = vn}

τ ::= · · · | {l1 :τ1, . . . , ln :τn}

4

Dynamic Semantics

E ::= . . .

| {l1 = v1, . . . , li−1 = vi−1, li = E, li+1 = ei+1, . . . , ln = en}
| E.l

{l1 = v1, . . . , ln = vn}.li → vi

5

Static Semantics

∀i ∈ 1..n. Γ ⊢ ei :τi
Γ ⊢ {l1 = e1, . . . , ln = en} :{l1 :τ1, . . . , ln :τn}

Γ ⊢ e :{l1 :τ1, . . . , ln :τn}
Γ ⊢ e.li :τi

6

Example

Note that the order of labels is important!

The type of the record value

{lat = −40, long = 175}

is

{lat : int, long : int},

which is different from

{long : int, lat : int},

the type of the record value

{long = 175, lat = −40}

7

Subtyping

Definition (Subtype)

τ1 is a subtype of τ2 (written τ1 ≤ τ2) if a program can use a value of
type τ1 whenever it would use a value of type τ2.

If τ1 ≤ τ2, then τ1 is usually referred to as the subtype, and τ2 as the
supertype.

Γ ⊢ e :τ τ ≤ τ ′

Γ ⊢ e :τ ′
Subsumption

This typing rule says that if e has type τ and τ is a subtype of τ ′,
then e also has type τ ′.

8

Subtyping Relation

One can think of types as describing sets of values that share some
common property. Then type τ is a subtype of type τ ′ is every
value in the set for τ can be regarded as a value in the set for τ ′.

The subtype relation is both reflexive and transitive. These
properties are intuitive if we think of subtyping as a subset relation.

τ ≤ τ
S-Refl

τ1 ≤ τ2 τ2 ≤ τ3

τ1 ≤ τ3
S-Trans

9

Record Subtyping

We certainly want “width” subtyping...

k ≥ 0

{l1 :τ1, . . . , ln+k :τn+k} ≤ {l1 :τ1, . . . , ln :τn}

...as well as “depth” subtyping...

∀i ∈ 1..n. τi ≤ τ ′i
{l1 :τ1, . . . , ln :τn} ≤ {l1 :τ1, . . . , ln :τn}

... and “permutation” subtyping:

π a permutation on 1..n

{l1 :τ1, . . . , ln :τn} ≤ {lπ(1) :τπ(1), . . . , lπ(n) :τπ(n)}

10

Record Subtyping

Putting all three forms of record subtyping together:

∀i ∈ 1..n. ∃j ∈ 1..m. l′i = lj ∧ τj ≤ τ ′i
{l1 :τ1, . . . , lm :τm} ≤ {l′1 :τ ′1, . . . , l′n :τ ′n}

S-Record

11

Top Type

It is natural to ask... what is the maximal type with repsect to
subtyping?

τ ::= · · · | ⊤

The⊤ type can be used to model types such as Java’s Object.

The subtyping rule for⊤ is as follows:

τ ≤ ⊤
S-Top

12

Sum and Product Subtyping

We can extend the subtyping relation to handle sums and
products, in the obvious way:

τ1 ≤ τ ′1 τ2 ≤ τ ′2
τ1 + τ2 ≤ τ ′1 + τ ′2

S-Sum

τ1 ≤ τ ′1 τ2 ≤ τ ′2
τ1 × τ2 ≤ τ ′1 × τ ′2

S-Product

13

Function Types

Consider two function types τ1 → τ2 and τ ′1 → τ ′2.

What subtyping relations between the τi and τ ′i must hold to
ensure that τ1 → τ2 ≤ τ ′1 → τ ′2 holds?

“As usual, something funny happens to the left of the arrow”

—John C. Reynolds

14

Example

Consider the following expression,

G ≜ λf :τ ′1 → τ ′2. λx :τ
′
1. f x.

which has type:

(τ ′1 → τ ′2) → τ ′1 → τ ′2

Now suppose we want to supply h :τ1 → τ2 to G

Suppose that v is a value of type τ ′1. Then G h v will evaluate to h v,
meaning that h will be passed a value of type τ1. Since h has type
τ1 → τ2, we must have τ ′1 ≤ τ1

The result type of G h v should be of type τ ′2 according to the type
of G, but h v will produce a value of type τ2, as indicated by the
type of h. So we must have τ2 ≤ τ ′2

15

Function Subtyping

Putting these two pieces together, we get the following subtyping
rule for function types:

τ ′1 ≤ τ1 τ2 ≤ τ ′2
τ1 → τ2 ≤ τ ′1 → τ ′2

S-Function

Note that the subtyping relation between the argument and result
types in the premise are in different directions!

The subtype relation for the result type is in the same direction as
for the conclusion (primed version is the supertype, non-primed
version is the subtype); it is in the opposite direction for the
argument type.

We say that subtyping for the function type is covariant in the
result type, and contravariant in the argument type.

16

Reference Subtyping

Suppose we have a location l of type τ ref, and a location l′ of type
τ ′ ref.

What should the relationship be between τ and τ ′ in order to have
τ ref ≤ τ ′ ref?

17

Example

Consider the following program R, which takes a location x of type
τ ′ ref and reads from it.

R ≜ λx :τ ′ ref. !x

This has the type τ ′ ref → τ ′. Suppose we give R a location l as an
argument. Then R l will look up the value stored in l, and return a
result of type τ (since l is type τ ref.

Since R is meant to return a result of type τ ′ ref, we thus want to
have τ ≤ τ ′.

18

Example

Now consider the following programW, which takes a location x of
type τ ′ ref, a value y of type τ ′, and writes y to the location.

W ≜ λx :τ ′ ref. λy :τ ′. x := y

This program has type τ ′ ref → τ ′ → τ ′.

Suppose we have a value v of type τ ′, and consider the expression
W l v.

This will evaluate to l := v, and since l has type τ ref, it must be the
case that v has type τ , and so τ ′ ≤ τ .

This suggests that subtyping for reference types is contravariant!

19

Reference Subtyping

In fact, subtyping for reference types must be invariant: a reference
type τ ref is a subtype of τ ′ ref if and only if τ ≤ τ ′ and τ ′ ≤ τ .

τ ≤ τ ′ τ ′ ≤ τ

τ ref ≤ τ ′ref
S-Ref

Indeed, it is not hard to see that to be sound, subtyping for all
mutable language constructs must be invariant

20

Java Arrays

Interestingly, in the Java programming language, mutable arrays
have covariant subtyping!

Suppose that we have two classes Person and Student such that
Student extends Person (that is, Student is a subtype of Person).

Code that only reads from arrays typechecks,

Person[] arr = new Student[] { new Student(“Alice”) };
Person p = arr[0];

but the following code, which writes into the array, has some issues:

arr[0] = new Person(“Bob”);

Specifically, this generates an ArrayStoreException
21

