CS 4110

Programming Languages & Logics

Lecture 25
Compiling with Continuations

31 October 2014

Announcements

- PS 7 out; due next Thursday
- Prelim II conflicts
- Foster office hours 11-12pm
- Next Thursday: Talk on Iron by Yaron Minsky PhD '02

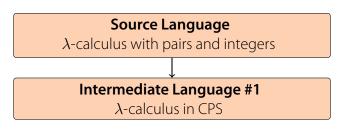
CS 4120 in one lecture!

CS 4120 in one lecture!

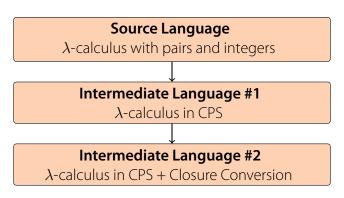
Source Language

 λ -calculus with pairs and integers

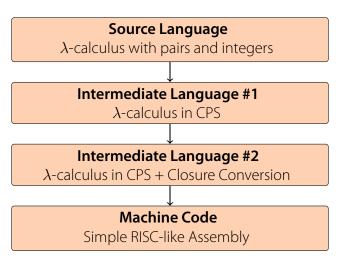
CS 4120 in one lecture!



CS 4120 in one lecture!



CS 4120 in one lecture!



We've seen continuations several times in this course already:

- As a way to implement break and continue
- As a way to make definitional translation more robust
- As an intermediate language in interpreters

We've seen continuations several times in this course already:

- As a way to implement break and continue
- As a way to make definitional translation more robust
- As an intermediate language in interpreters

Because continuations expose control explicitly, they make a good intermediate language for compilation—control is exposed explicitly in machine code as well.

We've seen continuations several times in this course already:

- As a way to implement break and continue
- As a way to make definitional translation more robust
- As an intermediate language in interpreters

Because continuations expose control explicitly, they make a good intermediate language for compilation—control is exposed explicitly in machine code as well.

To show this, we will develop a translation from a full-featured functional language down to an assembly-like language.

We've seen continuations several times in this course already:

- As a way to implement break and continue
- As a way to make definitional translation more robust
- As an intermediate language in interpreters

Because continuations expose control explicitly, they make a good intermediate language for compilation—control is exposed explicitly in machine code as well.

To show this, we will develop a translation from a full-featured functional language down to an assembly-like language.

This translation will give a fairly complete recipe for compiling any of the features we have discussed over the past few weeks all the way down to hardware.

Source Language

We'll start from (untyped) λ -calculus with pairs and integers.

$$e ::= x$$
 $| \lambda x. e$
 $| e_1 e_2$
 $| (e_1, e_2)$
 $| \#i e$
 $| n$
 $| e_1 + e_2$

E

$$p ::= bb_1; bb_2; \ldots; bb_n$$

A program *p* consists of a series of *basic blocks bb*.

$$p ::= bb_1; bb_2; ...; bb_n$$

 $bb ::= lb : c_1; c_2; ...; c_n; jump x$

A basic block has a label $\it lb$ and a sequence of commands $\it c$, ending with jump

```
p ::= bb_1; bb_2; ...; bb_n

bb ::= lb : c_1; c_2; ...; c_n; jump x

c ::= mov x_1, x_2
```

```
p ::= bb_1; bb_2; \dots; bb_n
bb ::= lb : c_1; c_2; \dots; c_n; \text{jump } x
c ::= \text{mov } x_1, x_2
\mid \text{mov } x, n
```

```
p ::= bb_1; bb_2; \dots; bb_n
bb ::= lb : c_1; c_2; \dots; c_n; \text{jump } x
c ::= \text{mov } x_1, x_2
\mid \text{mov } x, n
\mid \text{mov } x, lb
```

```
p ::= bb_1; bb_2; ...; bb_n

bb ::= lb : c_1; c_2; ...; c_n; jump x

c ::= mov x_1, x_2

| mov x, n

| mov x, lb

| add x_1, x_2, x_3
```

```
p ::= bb_1; bb_2; ...; bb_n

bb ::= lb : c_1; c_2; ...; c_n; jump x

c ::= mov x_1, x_2

| mov x, n

| mov x, lb

| add x_1, x_2, x_3

| load x_1, x_2[n]
```

```
p ::= bb_1; bb_2; ...; bb_n

bb ::= lb : c_1; c_2; ...; c_n; jump x

c ::= mov x_1, x_2

| mov x, n

| mov x, lb

| add x_1, x_2, x_3

| load x_1, x_2[n]

| store x_1, x_2[n]
```

```
::= bb_1; bb_2; \ldots; bb_n
bb ::= lb : c_1; c_2; ...; c_n; jump x
 C ::= \text{mov } X_1, X_2
            mov x, n
            mov x, lb
            add x_1, x_2, x_3
            load x_1, x_2[n]
            store x_1, x_2[n]
            malloc n
```

The only one that is non-standard is malloc. It allocates n words of space and places its address into a special register r_0 . Ignoring garbage, it can be implemented as simply as add r_0 , r_0 , -n.

Intermediate Language

$$c ::= let x = e in c$$

$$| v_1 v_2 v_3$$

$$| v_1 v_2$$

Commands c look like basic blocks.

Intermediate Language

$$c ::= let x = e in c$$
 $\begin{vmatrix} v_1 & v_2 & v_3 \\ & v_1 & v_2 \end{vmatrix}$
 $e ::= v | v_1 + v_2 | (v_1, v_2) | (\#i v)$

There are no subexpressions in the language!

Intermediate Language

$$c ::= let x = e in c$$

$$| v_1 v_2 v_3$$

$$| v_1 v_2 |$$

$$e ::= v | v_1 + v_2 | (v_1, v_2) | (\#i v)$$

$$v ::= n | x | \lambda x. \lambda k. c | halt | \underline{\lambda} x. c$$

Abstractions encoding continuations are marked with an underline. These are called *administrative lambdas* and can be eliminated at compile time.

The contract of the translation is that [e]k will evaluate e and pass its result to the continuation k.

To translate an entire program, we use k = halt, where halt is the continuation to send the result of the entire program to.

$$\llbracket x \rrbracket k = kx$$

$$[\![x]\!]k = kx$$
$$[\![n]\!]k = kn$$

```
[\![x]\!] k = kx
[\![n]\!] k = kn
[\![(e_1 + e_2)\!] k = [\![e_1]\!] (\underline{\lambda}x_1.[\![e_2]\!] (\underline{\lambda}x_2. \text{ let } z = x_1 + x_2 \text{ in } kz))
```

```
[\![x]\!] k = kx
[\![n]\!] k = kn
[\![(e_1 + e_2)\!] k = [\![e_1]\!] (\underline{\lambda}x_1.[\![e_2]\!] (\underline{\lambda}x_2. \operatorname{let} z = x_1 + x_2 \operatorname{in} kz))
[\![(e_1, e_2)\!] k = [\![e_1]\!] (\underline{\lambda}x_1.[\![e_2]\!] (\underline{\lambda}x_2. \operatorname{let} t = (x_1, x_2) \operatorname{in} kt))
[\![\# i e]\!] k = [\![e]\!] (\underline{\lambda}t. \operatorname{let} y = \# i t \operatorname{in} ky)
[\![\lambda x. e]\!] k = k (\lambda x. \lambda k'. [\![e]\!] k')
```

Let's translate the expression $[(\lambda a.\#1 \ a) \ (3,4)] \ k$, using k = halt.

Let's translate the expression $[(\lambda a.\#1 \ a) \ (3,4)] \ k$, using k = halt.

$$[(\lambda a. \#1 \ a) \ (3, 4)] \ k$$

Let's translate the expression $[(\lambda a.\#1 a)(3,4)]k$, using k = halt.

$$[(\lambda a. \#1 \ a) \ (3,4)] \ k$$

$$= [[\lambda a. \#1 \ a]] (\underline{\lambda} f. [(3,4)] (\underline{\lambda} v. f v k))$$

Let's translate the expression $[(\lambda a.\#1 a)(3,4)]k$, using k = halt.

- $[(\lambda a. \#1 \ a) \ (3, 4)] \ k$
- $= [\![\lambda a. \#1 \ a]\!] (\underline{\lambda} f. [\![(3,4)]\!] (\underline{\lambda} v. f v k))$
- $= (\underline{\lambda}f. [(3,4)](\underline{\lambda}v. f v k)) (\lambda a. \lambda k'. [\#1 a] k')$

Example

Let's translate the expression $[(\lambda a.\#1 \ a) \ (3,4)] \ k$, using k = halt.

$$[(\lambda a. \#1 \ a) \ (3,4)] \ k$$

$$= [[\lambda a. \#1 \ a]] \ (\underline{\lambda}f. [[(3,4)]] (\underline{\lambda}v. f v k))$$

$$= (\underline{\lambda}f. [[(3,4)]] (\underline{\lambda}v. f v k)) \ (\lambda a. \lambda k'. [\#1 \ a]] \ k')$$

$$= (\underline{\lambda}f. [[3]] \ (\underline{\lambda}x_1. [4]] (\underline{\lambda}x_2. \ \text{let} \ b = (x_1, x_2) \ \text{in} \ (\underline{\lambda}v. f v k) \ b))$$

$$(\lambda a. \lambda k'. [\#1 \ a]] \ k')$$

Example

Let's translate the expression $[(\lambda a.\#1 \ a) \ (3,4)] \ k$, using k = halt.

Example

Let's translate the expression $[(\lambda a.\#1 \ a) \ (3,4)] \ k$, using k = halt.

Clearly, the translation generates a lot of administrative λ s!

Clearly, the translation generates a lot of administrative λ s!

To make the code more efficient and compact, we will optimize using some simple rewriting rules to eliminate administrative λ s

Clearly, the translation generates a lot of administrative λ s!

To make the code more efficient and compact, we will optimize using some simple rewriting rules to eliminate administrative λ s

We can eliminate applications to variables by copy propagation:

$$(\underline{\lambda}x.e)y \to e\{y/x\}$$

Clearly, the translation generates a lot of administrative λ s!

To make the code more efficient and compact, we will optimize using some simple rewriting rules to eliminate administrative λ s

We can eliminate applications to variables by copy propagation:

$$(\underline{\lambda}x.e)y \rightarrow e\{y/x\}$$

Other lambdas can be converted into lets:

$$(\underline{\lambda}x.c)v \to \text{let } x = v \text{ in } c$$

1

Clearly, the translation generates a lot of administrative λ s!

To make the code more efficient and compact, we will optimize using some simple rewriting rules to eliminate administrative λ s

We can eliminate applications to variables by copy propagation:

$$(\underline{\lambda}x.e)y \to e\{y/x\}$$

Other lambdas can be converted into lets:

$$(\underline{\lambda}x.c)v \to \text{let } x = v \text{ in } c$$

We can also perform administrative η -reductions:

$$\lambda x.kx \rightarrow k$$

Example, Redux

After applying these rewrite rules to the expression we had previously, we obtain the following:

```
let f = \lambda a. \lambda k'. let y = #1 a in k' y in let x_1 = 3 in let x_2 = 4 in let b = (x_1, x_2) in f b k
```

This is starting to look a lot more like our target language!

The idea of separating administrative terms from real terms and performing compile-time simplifications is called *partial evaluation*.

The idea of separating administrative terms from real terms and performing compile-time simplifications is called *partial evaluation*.

Partial evaluation is a general and powerful technique that also applies in many other contexts.

The idea of separating administrative terms from real terms and performing compile-time simplifications is called *partial evaluation*.

Partial evaluation is a general and powerful technique that also applies in many other contexts.

Here, it allows us to write a very simple CPS conversion that treats all continuations uniformly, and perform a number of control optimizations.

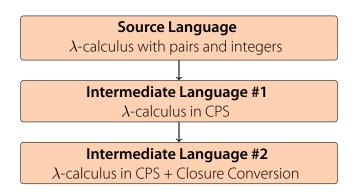
The idea of separating administrative terms from real terms and performing compile-time simplifications is called *partial evaluation*.

Partial evaluation is a general and powerful technique that also applies in many other contexts.

Here, it allows us to write a very simple CPS conversion that treats all continuations uniformly, and perform a number of control optimizations.

Note that we may not be able to remove all administrative lambdas. Any that cannot be eliminated using the rules above are converted into real lambdas.

Roadmap



The next step is to bring all λ s to the top level, with no nesting.

$$P ::= | \det x_f = \lambda x_1, \dots \lambda x_n, \lambda k, c \text{ in } P$$

$$| \det x_c = \lambda x_1, \dots \lambda x_n, c \text{ in } P$$

$$| c$$

$$c ::= | \det x = e \text{ in } c | x_1 x_2 \dots x_n$$

$$e ::= n | x | \text{ halt } | x_1 + x_2 | (x_1, x_2) | \# i x$$

This translation requires the construction of *closures* that capture the free variables of the lambda abstractions and is known as *closure conversion*.

The main part of the translation is captured by the following:

The main part of the translation is captured by the following:

$$[\![\lambda x. \, \lambda k. \, c]\!] \sigma =$$

$$[\![t] (c', \sigma') = [\![c]\!] \sigma \text{ in}$$

$$[\![t] y_1, \dots, y_n = fvs(\lambda x. \, \lambda k. \, c') \text{ in}$$

$$(fy_1, \dots, y_n, \, \sigma'[f \mapsto \lambda y_1, \dots, \lambda y_n, \lambda x. \, \lambda k. \, c']) \text{ where } f \text{ fresh}$$

The translation of λx . λk . c above first translates the body c, then creates a new function f parameterized on x as well as the free variables y_1 to y_n of the translated body

The main part of the translation is captured by the following:

$$[\![\lambda x. \ \lambda k. \ c]\!] \sigma =$$
let $(c', \sigma') = [\![c]\!] \sigma$ in
let $y_1, \ldots, y_n = fvs(\lambda x. \ \lambda k. \ c')$ in
 $(fy_1, \ldots, y_n, \ \sigma'[f \mapsto \lambda y_1, \ldots, \lambda y_n, \lambda x. \ \lambda k. \ c'])$ where f fresh

The translation of λx . λk . c above first translates the body c, then creates a new function f parameterized on x as well as the free variables y_1 to y_n of the translated body

It then adds f to the environment σ replaces the entire lambda with $(fy_n \ldots y_n)$

The main part of the translation is captured by the following:

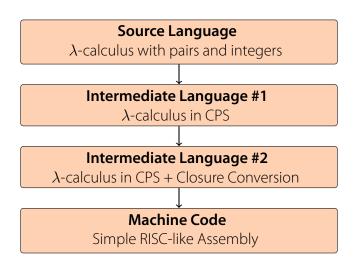
$$[\![\lambda x. \ \lambda k. \ c]\!] \sigma =$$
let $(c', \sigma') = [\![c]\!] \sigma$ in
let $y_1, \ldots, y_n = fvs(\lambda x. \ \lambda k. \ c')$ in
 $(fy_1, \ldots, y_n, \ \sigma'[f \mapsto \lambda y_1, \ldots, \lambda y_n, \lambda x. \ \lambda k. \ c'])$ where f fresh

The translation of λx . λk . c above first translates the body c, then creates a new function f parameterized on x as well as the free variables y_1 to y_n of the translated body

It then adds f to the environment σ replaces the entire lambda with $(fy_n \ldots y_n)$

When applied to an entire program, this has the effect of eliminating all nested λ s

Roadmap



$$\mathcal{P}\llbracket c \rrbracket = \text{main} : \mathcal{C}\llbracket c \rrbracket;$$

halt :

```
\mathcal{P}[\![\text{let }x_f = \lambda x_1, \dots \lambda x_n, \lambda k, c \text{ in } p]\!] = x_f : \text{mov } x_1, a_1;
\vdots
\text{mov } x_n, a_n;
\text{mov } k, ra;
\mathcal{C}[\![c]\!];
\mathcal{P}[\![p]\!]
```

```
\mathcal{P}[\![\text{let }x_c = \lambda x_1. \dots \lambda x_n. c \text{ in } p]\!] = x_c : \text{mov } x_1, a_1;
\vdots
\text{mov } x_n, a_n;
\mathcal{C}[\![c]\!];
\mathcal{P}[\![p]\!]
```

$$C[[let x = n in c]] = mov x, n;$$

 $C[[c]]$

$$C\llbracket \text{let } x_1 = x_2 \text{ in } c \rrbracket = \text{mov } x_1, x_2;$$

$$C\llbracket c \rrbracket$$

$$\mathcal{C}\llbracket \det x = x_1 + x_2 \text{ in } c \rrbracket = \operatorname{add} x_1, x_2, x;$$
$$\mathcal{C}\llbracket c \rrbracket$$

```
C[[let x = (x_1, x_2) in c]] = malloc 2;
mov x, r_0;
store x_1, x[0];
store x_2, x[1];
C[[c]]
```

$$\mathcal{C}\llbracket \text{let } x = \#i \, x_1 \text{ in } c \rrbracket = \text{load } x, x_1[i-1];$$

$$\mathcal{C}\llbracket c \rrbracket$$

```
C[x k x_1 \dots x_n] = \text{mov } a_1, x_1;
\vdots
\text{mov } a_n, x_n;
\text{mov } ra, k;
\text{jump } x
```

Final Thoughts

Note that we assume an infinite supply of registers. We would need to do register allocation and possibly spill registers to a stack to obtain working code.

Also, while this translation is very simple, it is not particularly efficient. For example, we are doing a lot of register moves when calling functions and when starting the function body, which could be optimized.