CS 4110

Programming Languages \& Logics

Lecture 25
Compiling with Continuations

31 October 2014

Announcements

- PS 7 out; due next Thursday
- Prelim II conflicts
- Foster office hours 11-12pm
- Next Thursday: Talk on Iron by Yaron Minsky PhD '02

Roadmap

CS 4120 in one lecture!

Roadmap

CS 4120 in one lecture!

Source Language

λ-calculus with pairs and integers

Roadmap

CS 4120 in one lecture!

Source Language

λ-calculus with pairs and integers

Intermediate Language \#1
λ-calculus in CPS

Roadmap

CS 4120 in one lecture!

Source Language

λ-calculus with pairs and integers

Intermediate Language \#1
λ-calculus in CPS

Intermediate Language \#2
λ-calculus in CPS + Closure Conversion

Roadmap

CS 4120 in one lecture!

Source Language

λ-calculus with pairs and integers

Machine Code
Simple RISC-like Assembly

Continuations

We've seen continuations several times in this course already:

- As a way to implement break and continue
- As a way to make definitional translation more robust
- As an intermediate language in interpreters

Continuations

We've seen continuations several times in this course already:

- As a way to implement break and continue
- As a way to make definitional translation more robust
- As an intermediate language in interpreters

Because continuations expose control explicitly, they make a good intermediate language for compilation-control is exposed explicitly in machine code as well.

Continuations

We've seen continuations several times in this course already:

- As a way to implement break and continue
- As a way to make definitional translation more robust
- As an intermediate language in interpreters

Because continuations expose control explicitly, they make a good intermediate language for compilation-control is exposed explicitly in machine code as well.

To show this, we will develop a translation from a full-featured functional language down to an assembly-like language.

Continuations

We've seen continuations several times in this course already:

- As a way to implement break and continue
- As a way to make definitional translation more robust
- As an intermediate language in interpreters

Because continuations expose control explicitly, they make a good intermediate language for compilation-control is exposed explicitly in machine code as well.

To show this, we will develop a translation from a full-featured functional language down to an assembly-like language.

This translation will give a fairly complete recipe for compiling any of the features we have discussed over the past few weeks all the way down to hardware.

Source Language

We'll start from (untyped) λ-calculus with pairs and integers.

$$
\begin{aligned}
e & ::= \\
& x \\
& \lambda x \cdot e \\
& e_{1} e_{2} \\
\mid & \left(e_{1}, e_{2}\right) \\
\mid & \# i e \\
\mid & n \\
\mid & e_{1}+e_{2}
\end{aligned}
$$

Target Language

$$
p::=b b_{1} ; b b_{2} ; \ldots ; b b_{n}
$$

A program p consists of a series of basic blocks bb.

Target Language

$$
\begin{aligned}
p & ::=b b_{1} ; b b_{2} ; \ldots ; b b_{n} \\
b b & ::=1 b: c_{1} ; c_{2} ; \ldots ; c_{n} ; \text { jump } x
\end{aligned}
$$

A basic block has a label lb and a sequence of commands c, ending with jump

Target Language

$$
\begin{aligned}
p & ::=b b_{1} ; b b_{2} ; \ldots ; b b_{n} \\
b b & ::=\mid b: c_{1} ; c_{2} ; \ldots ; c_{n} ; \text { jump } x \\
c & ::=\operatorname{mov} x_{1}, x_{2}
\end{aligned}
$$

Commands correspond to assembly language instructions and are largely self-evident.

Target Language

$$
\begin{aligned}
p & ::=b b_{1} ; b b_{2} ; \ldots ; b b_{n} \\
b b & ::=1 b: c_{1} ; c_{2} ; \ldots ; c_{n} ; j u m p x \\
c::= & \operatorname{mov} x_{1}, x_{2} \\
& \mid \operatorname{mov} x, n
\end{aligned}
$$

Commands correspond to assembly language instructions and are largely self-evident.

Target Language

$$
\begin{array}{rl}
p & ::= \\
b b & ::= \\
b & b b: c b_{1} ; c_{1} ; \ldots ; b b_{n} ; \ldots ; c_{n} ; \text { jump } x \\
c: & =\operatorname{mov} x_{1}, x_{2} \\
& \mid \operatorname{mov} x, n \\
& \operatorname{mov} x, l b
\end{array}
$$

Commands correspond to assembly language instructions and are largely self-evident.

Target Language

$$
\begin{aligned}
p::= & b b_{1} ; b b_{2} ; \ldots ; b b_{n} \\
b b::= & \mid b: c_{1} ; c_{2} ; \ldots ; c_{n} ; j u m p x \\
c::= & \operatorname{mov} x_{1}, x_{2} \\
& \operatorname{mov} x, n \\
& \operatorname{mov} x, l b \\
& \mid \quad \operatorname{add} x_{1}, x_{2}, x_{3}
\end{aligned}
$$

Commands correspond to assembly language instructions and are largely self-evident.

Target Language

$$
\begin{aligned}
p & ::= \\
b b & ::= \\
c & \mid b: b b_{1} ; b b_{2} ; \ldots ; c_{2} ; \ldots ; b_{n} ; \text { jump } x \\
c: & \operatorname{mov} x_{1}, x_{2} \\
& \operatorname{mov} x, n \\
& \operatorname{mov} x, l b \\
& \operatorname{add} x_{1}, x_{2}, x_{3} \\
& \mid \operatorname{load} x_{1}, x_{2}[n]
\end{aligned}
$$

Commands correspond to assembly language instructions and are largely self-evident.

Target Language

$$
\begin{aligned}
p::= & b b_{1} ; b b_{2} ; \ldots ; b b_{n} \\
b b::= & \mid b: c_{1} ; c_{2} ; \ldots ; c_{n} ; j u m p x \\
c::= & \operatorname{mov} x_{1}, x_{2} \\
& \operatorname{mov} x, n \\
& \operatorname{mov} x, 1 b \\
& \operatorname{add} x_{1}, x_{2}, x_{3} \\
\mid & \text { load } x_{1}, x_{2}[n] \\
& \text { store } x_{1}, x_{2}[n]
\end{aligned}
$$

Commands correspond to assembly language instructions and are largely self-evident.

Target Language

$$
\begin{aligned}
p & ::= \\
b b & ::= \\
c & \mid b: b_{1} ; b b_{2} ; \ldots ; c_{1} ; c_{2} ; \ldots ; b_{n} ; j \text { jump } x \\
c: & \operatorname{mov} x_{1}, x_{2} \\
& \operatorname{mov} x, n \\
& \operatorname{mov} x, l b \\
& \operatorname{add} x_{1}, x_{2}, x_{3} \\
& \left\lvert\, \begin{array}{ll}
\mid l o a d & x_{1}, x_{2}[n] \\
& \\
& \text { store } x_{1}, x_{2}[n] \\
& \text { malloc } n
\end{array}\right.
\end{aligned}
$$

The only one that is non-standard is malloc. It allocates n words of space and places its address into a special register r_{0}. Ignoring garbage, it can be implemented as simply as add $r_{0}, r_{0},-n$.

Intermediate Language

$$
c: \begin{aligned}
& c=\text { let } x=e \text { in } c \\
& \\
& v_{1} v_{2} v_{3} \\
& v_{1} v_{2}
\end{aligned}
$$

Commands c look like basic blocks.

Intermediate Language

$$
\begin{array}{rlrl}
c::= & \text { let } x=e \text { in } c \\
\mid & v_{1} v_{2} v_{3} \\
\mid & v_{1} v_{2} \\
e & ::= & v\left|v_{1}+v_{2}\right|\left(v_{1}, v_{2}\right) \mid(\# i v)
\end{array}
$$

There are no subexpressions in the language!

Intermediate Language

$$
\begin{aligned}
& c::= \text { let } x=e \text { in } c \\
& \mid \quad v_{1} v_{2} v_{3} \\
& v_{1} v_{2} \\
& e::= \\
& v\left|v_{1}+v_{2}\right|\left(v_{1}, v_{2}\right) \mid(\# i v) \\
& v::=n|x| \lambda x \cdot \lambda k \cdot c \mid \text { halt } \mid \underline{\lambda x} \cdot c
\end{aligned}
$$

Abstractions encoding continuations are marked with an underline. These are called administrative lambdas and can be eliminated at compile time.

CPS Translation

The contract of the translation is that $\llbracket e \rrbracket k$ will evaluate e and pass its result to the continuation k.

To translate an entire program, we use $k=$ halt, where halt is the continuation to send the result of the entire program to.

CPS Translation

$$
\llbracket x \rrbracket k=k x
$$

$$
\begin{aligned}
& \llbracket \times \backslash k=k x \\
& \llbracket \llbracket \rrbracket k=k n
\end{aligned}
$$

$$
\begin{aligned}
\llbracket x \rrbracket k & =k x \\
\llbracket n \rrbracket k & =k n \\
\llbracket\left(e_{1}+e_{2}\right) \rrbracket k & =\llbracket e_{1} \rrbracket\left(\underline{\lambda} x_{1} \cdot \llbracket e_{2} \rrbracket\left(\lambda x_{2} \cdot \text { let } z=x_{1}+x_{2} \text { in } k z\right)\right)
\end{aligned}
$$

CPS Translation

$$
\begin{aligned}
\llbracket \mathbb{x} \rrbracket k & =k x \\
\llbracket \eta \rrbracket k & =k n \\
\llbracket\left(e_{1}+e_{2}\right) \rrbracket k & =\llbracket e_{1} \rrbracket\left(\underline{\lambda x_{1}} \cdot \llbracket e_{2} \rrbracket\left(\underline{\lambda} x_{2} . \text { let } z=x_{1}+x_{2} \text { in } k z\right)\right) \\
\llbracket\left(e_{1}, e_{2}\right) \rrbracket k & =\llbracket e_{1} \mathbb{\rrbracket}\left(\underline{\lambda x_{1}} \cdot \llbracket e_{2} \rrbracket\left(\underline{\lambda x_{2}} \cdot \text { let } t=\left(x_{1}, x_{2}\right) \text { in } k t\right)\right)
\end{aligned}
$$

CPS Translation

$$
\begin{aligned}
& \llbracket \llbracket \rrbracket k=k x \\
& \llbracket \rrbracket \rrbracket k=k n \\
& \llbracket\left(e_{1}+e_{2}\right) \rrbracket k=\llbracket e_{1} \rrbracket\left(\underline{\lambda_{1}} \cdot \llbracket e_{2} \rrbracket\left(\underline{\lambda} x_{2} \cdot \text { let } z=x_{1}+x_{2} \text { in } k z\right)\right) \\
& \llbracket\left(e_{1}, e_{2}\right) \rrbracket k=\llbracket e_{1} \mathbb{\rrbracket}\left(\underline{\lambda} x_{1} \cdot \llbracket e_{2} \rrbracket\left(\underline{\lambda} x_{2} \text {. le } t=\left(x_{1}, x_{2}\right) \text { in } k t\right)\right) \\
& \llbracket \# i \llbracket k=\llbracket \llbracket \rrbracket(\lambda t \text {. let } y=\# i t \text { in } k y)
\end{aligned}
$$

CPS Translation

$$
\begin{aligned}
& \llbracket \llbracket \rrbracket k=k x \\
& \llbracket n \rrbracket k=k n \\
& \llbracket\left(e_{1}+e_{2}\right) \rrbracket k=\llbracket e_{1} \rrbracket\left(\underline{\lambda x_{1}} \cdot \llbracket e_{2} \rrbracket\left(\underline{\lambda} x_{2} \cdot \text { let } z=x_{1}+x_{2} \text { in } k z\right)\right) \\
& \llbracket\left(e_{1}, e_{2}\right) \rrbracket k=\llbracket e_{1} \mathbb{\rrbracket}\left(\underline{\lambda} x_{1} \cdot \llbracket e_{2} \rrbracket\left(\underline{\lambda} x_{2} . \text { let } t=\left(x_{1}, x_{2}\right) \text { in } k t\right)\right) \\
& \llbracket \# i e \rrbracket k=\llbracket \llbracket \rrbracket(\lambda t \text {. let } y=\# i t \text { in } k y) \\
& \llbracket \lambda x . e \rrbracket k=k\left(\lambda x . \lambda k^{\prime} . \llbracket \llbracket \rrbracket k^{\prime}\right)
\end{aligned}
$$

CPS Translation

$$
\begin{aligned}
& \llbracket \llbracket \rrbracket k=k x \\
& \llbracket \rrbracket \rrbracket k=k n \\
& \llbracket\left(e_{1}+e_{2}\right) \rrbracket k=\llbracket e_{1} \rrbracket\left(\underline{\lambda} x_{1} \cdot \llbracket e_{2} \rrbracket\left(\underline{\lambda x_{2}} \text {. let } z=x_{1}+x_{2} \text { in } k z\right)\right) \\
& \llbracket\left(e_{1}, e_{2}\right) \rrbracket k=\llbracket e_{1} \rrbracket\left(\underline{\lambda} x_{1} \cdot \llbracket e_{2} \rrbracket\left(\underline{\lambda} x_{2} \text {. le } t=\left(x_{1}, x_{2}\right) \text { in } k t\right)\right) \\
& \llbracket \# i e \rrbracket k=\llbracket \mathbb{K}(\lambda t \text {. let } y=\# i t \text { in } k y) \\
& \llbracket \lambda x \cdot e \rrbracket k=k\left(\lambda x \cdot \lambda k^{\prime} . \llbracket e \rrbracket k^{\prime}\right) \\
& \llbracket e_{1} e_{2} \rrbracket k=\llbracket e_{1} \rrbracket\left(\underline{\lambda} f \cdot \llbracket e_{2} \rrbracket(\underline{\lambda} v \cdot f v k)\right)
\end{aligned}
$$

Example

Let's translate the expression $\llbracket(\lambda a . \# 1 a)(3,4) \rrbracket k$, using $k=$ halt.

Example

Let's translate the expression $\llbracket(\lambda a . \# 1 a)(3,4) \rrbracket k$, using $k=$ halt.

$$
\llbracket(\lambda a . \# 1 a)(3,4) \rrbracket k
$$

Example

Let's translate the expression $\llbracket(\lambda a . \# 1 a)(3,4) \rrbracket k$, using $k=$ halt.

$$
\begin{aligned}
& \llbracket(\lambda a \cdot \# 1 a)(3,4) \rrbracket k \\
= & \llbracket \lambda a \cdot \# 1 a \rrbracket(\underline{\lambda} f \cdot \llbracket(3,4) \rrbracket(\underline{\lambda} v \cdot f v k))
\end{aligned}
$$

Example

Let's translate the expression $\llbracket(\lambda a . \# 1 a)(3,4) \rrbracket k$, using $k=$ halt.

$$
\begin{aligned}
& \llbracket(\lambda a \cdot \# 1 a)(3,4) \rrbracket k \\
= & \llbracket \lambda a \cdot \# 1 a \rrbracket(\underline{\lambda} f \cdot \llbracket(3,4) \rrbracket(\underline{\lambda} v \cdot f v k)) \\
= & (\underline{\lambda} f \cdot \llbracket(3,4) \rrbracket(\underline{\lambda} v \cdot f v k))\left(\lambda a \cdot \lambda k^{\prime} \cdot \llbracket \# 1 a \rrbracket k^{\prime}\right)
\end{aligned}
$$

Example

Let's translate the expression $\llbracket(\lambda a . \# 1 a)(3,4) \rrbracket k$, using $k=$ halt.

$$
\begin{aligned}
& \llbracket(\lambda a \cdot \# 1 a)(3,4) \rrbracket k \\
= & \llbracket \lambda a \cdot \# 1 a \rrbracket(\underline{\lambda} f \cdot \llbracket(3,4) \rrbracket(\lambda v v \cdot f v k)) \\
= & (\underline{\lambda} f \cdot \llbracket(3,4) \rrbracket(\underline{\lambda} v \cdot f v k))\left(\lambda a \cdot \lambda k^{\prime} \cdot \llbracket \# 1 a \rrbracket k^{\prime}\right) \\
= & \left(\underline{\lambda} f \cdot \llbracket 3 \rrbracket\left(\underline{\lambda} x_{1} \cdot \llbracket 4 \rrbracket\left(\underline{\lambda} x_{2} \cdot \text { let } b=\left(x_{1}, x_{2}\right) \text { in }(\underline{\lambda} v \cdot f v k) b\right)\right)\right. \\
& \left(\lambda a \cdot \lambda k^{\prime} \cdot \llbracket \# 1 a \rrbracket k^{\prime}\right)
\end{aligned}
$$

Example

Let's translate the expression 【($\lambda a . \# 1 a)(3,4) \rrbracket k$, using $k=$ halt.

$$
\begin{aligned}
& \llbracket(\lambda a \cdot \# 1 a)(3,4) \rrbracket k \\
= & \llbracket \lambda a \cdot \# 1 a \rrbracket(\underline{\lambda} f \cdot \llbracket(3,4) \rrbracket((\underline{\lambda} v \cdot f v k)) \\
= & (\underline{\lambda} f \cdot \llbracket(3,4) \rrbracket(\underline{\lambda} v \cdot f v k))\left(\lambda a \cdot \lambda k^{\prime} \cdot \llbracket \# 1 a \rrbracket k^{\prime}\right) \\
= & \left(\underline{\lambda} f \cdot \llbracket 3 \rrbracket\left(\underline{\lambda} x_{1} \cdot \llbracket 4 \rrbracket\left(\underline{\lambda} x_{2} \cdot \text { let } b=\left(x_{1}, x_{2}\right) \text { in }(\underline{\lambda} v \cdot f v k) b\right)\right)\right. \\
& \quad\left(\lambda a \cdot \lambda k^{\prime} \cdot \llbracket \# 1 a \rrbracket k^{\prime}\right) \\
= & \left(\underline{\lambda} f \cdot\left(\underline{\lambda} x_{1} \cdot\left(\underline{\lambda} x_{2} \cdot \text { let } b=\left(x_{1}, x_{2}\right) \text { in }(\underline{\lambda} \cdot f v k) b\right) 4\right) 3\right) \\
& \quad\left(\lambda a \cdot \lambda k^{\prime} \cdot \llbracket \# 1 a \rrbracket k^{\prime}\right)
\end{aligned}
$$

Example

Let's translate the expression $\llbracket(\lambda a . \# 1 a)(3,4) \rrbracket k$, using $k=$ halt.

$$
\begin{aligned}
& \llbracket(\lambda a \cdot \# 1 a)(3,4) \rrbracket k \\
= & \llbracket \lambda a \cdot \# 1 a \rrbracket(\underline{\lambda} f \cdot \llbracket(3,4) \rrbracket(\underline{\lambda} v \cdot f v k)) \\
= & (\underline{\lambda} f \cdot \llbracket(3,4) \rrbracket(\underline{\lambda} v \cdot f v k))\left(\lambda a \cdot \lambda k^{\prime} \cdot \llbracket \# 1 a \rrbracket k^{\prime}\right) \\
= & \left(\underline{\lambda} f \cdot \llbracket 3 \rrbracket\left(\underline{\lambda} x_{1} \cdot \llbracket 4 \rrbracket\left(\underline{\lambda} x_{2} \cdot \text { let } b=\left(x_{1}, x_{2}\right) \text { in }(\underline{\lambda} v \cdot f v k) b\right)\right)\right. \\
& \quad\left(\lambda a \cdot \lambda k^{\prime} \cdot \llbracket \# 1 a \rrbracket k^{\prime}\right) \\
= & \left(\underline{\lambda} f \cdot\left(\underline{\lambda} x_{1} \cdot\left(\underline{\lambda} x_{2} \cdot \text { let } b=\left(x_{1}, x_{2}\right) \text { in }(\underline{\lambda} v \cdot f v k) b\right) 4\right) 3\right) \\
& \quad\left(\lambda a \cdot \lambda k^{\prime} \cdot \llbracket \# 1 a \rrbracket k^{\prime}\right) \\
= & \left(\underline{\lambda} f \cdot\left(\underline{\lambda} x_{1} \cdot\left(\underline{\lambda} x_{2} \cdot \text { let } b=\left(x_{1}, x_{2}\right) \text { in }(\underline{\lambda v} \cdot f v k) b\right) 4\right) 3\right) \\
& \quad\left(\lambda a \cdot \lambda k^{\prime} \cdot \llbracket a \rrbracket\left(\underline{\lambda} t \cdot \text { let } y=\# 1 t \text { in } k^{\prime} t\right)\right)
\end{aligned}
$$

Optimization

Clearly, the translation generates a lot of administrative λs !

Optimization

Clearly, the translation generates a lot of administrative λs !
To make the code more efficient and compact, we will optimize using some simple rewriting rules to eliminate administrative λs

Optimization

Clearly, the translation generates a lot of administrative λs !
To make the code more efficient and compact, we will optimize using some simple rewriting rules to eliminate administrative λs

We can eliminate applications to variables by copy propagation:

$$
(\underline{\lambda} x . e) y \rightarrow e\{y / x\}
$$

Optimization

Clearly, the translation generates a lot of administrative λs !
To make the code more efficient and compact, we will optimize using some simple rewriting rules to eliminate administrative λs

We can eliminate applications to variables by copy propagation:

$$
(\underline{\lambda} x . e) y \rightarrow e\{y / x\}
$$

Other lambdas can be converted into lets:

$$
(\underline{\lambda} x \cdot c) v \rightarrow \text { let } x=v \text { in } c
$$

Optimization

Clearly, the translation generates a lot of administrative λs !
To make the code more efficient and compact, we will optimize using some simple rewriting rules to eliminate administrative λs

We can eliminate applications to variables by copy propagation:

$$
(\underline{\lambda} x . e) y \rightarrow e\{y / x\}
$$

Other lambdas can be converted into lets:

$$
(\underline{\lambda} x \cdot c) v \rightarrow \text { let } x=v \text { in } c
$$

We can also perform administrative η-reductions:

$$
\underline{\lambda} x \cdot k x \rightarrow k
$$

Example, Redux

After applying these rewrite rules to the expression we had previously, we obtain the following:

```
let \(f=\lambda a \cdot \lambda k^{\prime}\). let \(y=\# 1 a\) in \(k^{\prime} y\) in
let \(x_{1}=3\) in
let \(x_{2}=4\) in
let \(b=\left(x_{1}, x_{2}\right)\) in
fbk
```

This is starting to look a lot more like our target language!

Partial Evaluation

The idea of separating administrative terms from real terms and performing compile-time simplifications is called partial evaluation.

Partial Evaluation

The idea of separating administrative terms from real terms and performing compile-time simplifications is called partial evaluation.

Partial evaluation is a general and powerful technique that also applies in many other contexts.

Partial Evaluation

The idea of separating administrative terms from real terms and performing compile-time simplifications is called partial evaluation.

Partial evaluation is a general and powerful technique that also applies in many other contexts.

Here, it allows us to write a very simple CPS conversion that treats all continuations uniformly, and perform a number of control optimizations.

Partial Evaluation

The idea of separating administrative terms from real terms and performing compile-time simplifications is called partial evaluation.

Partial evaluation is a general and powerful technique that also applies in many other contexts.

Here, it allows us to write a very simple CPS conversion that treats all continuations uniformly, and perform a number of control optimizations.

Note that we may not be able to remove all administrative lambdas. Any that cannot be eliminated using the rules above are converted into real lambdas.

Closure Conversion

The next step is to bring all λ s to the top level, with no nesting.

$$
\begin{aligned}
& P::= \\
& \text { let } x_{f}=\lambda x_{1} \ldots \lambda x_{n} \cdot \lambda k . c \text { in } P \\
& \mid \text { let } x_{c}=\lambda x_{1} \ldots \lambda x_{n} . c \text { in } P \\
& \mid \quad c \\
& c::= \text { let } x=e \text { in } c \mid x_{1} x_{2} \ldots x_{n} \\
& e::= \\
& n|x| \text { halt }\left|x_{1}+x_{2}\right|\left(x_{1}, x_{2}\right) \mid \# i x
\end{aligned}
$$

This translation requires the construction of closures that capture the free variables of the lambda abstractions and is known as closure conversion.

Closure Conversion

The main part of the translation is captured by the following:

$$
\begin{aligned}
& \llbracket \lambda x \cdot \lambda k \cdot c \rrbracket \sigma= \\
& \quad \text { let }\left(c^{\prime}, \sigma^{\prime}\right)=\llbracket c \rrbracket \sigma \text { in } \\
& \quad \text { let } y_{1}, \ldots, y_{n}=f v s\left(\lambda x \cdot \lambda k . c^{\prime}\right) \text { in } \\
& \quad\left(f y_{1} \ldots y_{n}, \sigma^{\prime}\left[f \mapsto \lambda y_{1} \ldots \lambda y_{n} \cdot \lambda x . \lambda k . c^{\prime}\right]\right) \text { where } f \text { fresh }
\end{aligned}
$$

Closure Conversion

The main part of the translation is captured by the following:

$$
\begin{aligned}
& \llbracket \lambda x \cdot \lambda k \cdot c \rrbracket \sigma= \\
& \quad \text { let }\left(c^{\prime}, \sigma^{\prime}\right)=\llbracket c \rrbracket \sigma \text { in } \\
& \quad \text { let } y_{1}, \ldots, y_{n}=f v s\left(\lambda x \cdot \lambda k . c^{\prime}\right) \text { in } \\
& \quad\left(f y_{1} \ldots y_{n}, \sigma^{\prime}\left[f \mapsto \lambda y_{1} \ldots \lambda y_{n} \cdot \lambda x . \lambda k . c^{\prime}\right]\right) \text { where } f \text { fresh }
\end{aligned}
$$

The translation of $\lambda x . \lambda k . c$ above first translates the body c, then creates a new function f parameterized on x as well as the free variables y_{1} to y_{n} of the translated body

Closure Conversion

The main part of the translation is captured by the following:

$$
\begin{aligned}
& \llbracket \lambda x \cdot \lambda k \cdot c \rrbracket \sigma= \\
& \quad \text { let }\left(c^{\prime}, \sigma^{\prime}\right)=\llbracket c \rrbracket \sigma \text { in } \\
& \quad \text { let } y_{1}, \ldots, y_{n}=f v s\left(\lambda x \cdot \lambda k . c^{\prime}\right) \text { in } \\
& \left(f y_{1} \ldots y_{n}, \sigma^{\prime}\left[f \mapsto \lambda y_{1} \ldots \lambda y_{n} \cdot \lambda x . \lambda k . c^{\prime}\right]\right) \text { where } f \text { fresh }
\end{aligned}
$$

The translation of $\lambda x . \lambda k . c$ above first translates the body c, then creates a new function f parameterized on x as well as the free variables y_{1} to y_{n} of the translated body

It then adds f to the environment σ replaces the entire lambda with $\left(f y_{n} \ldots y_{n}\right)$

Closure Conversion

The main part of the translation is captured by the following:

$$
\begin{aligned}
& \llbracket \lambda x \cdot \lambda k . c \rrbracket \sigma= \\
& \quad \text { let }\left(c^{\prime}, \sigma^{\prime}\right)=\llbracket c \rrbracket \sigma \text { in } \\
& \quad \text { let } y_{1}, \ldots, y_{n}=f v s\left(\lambda x \cdot \lambda k . c^{\prime}\right) \text { in } \\
& \left(f y_{1} \ldots y_{n}, \sigma^{\prime}\left[f \mapsto \lambda y_{1} \ldots \lambda y_{n} \cdot \lambda x . \lambda k . c^{\prime}\right]\right) \text { where } f \text { fresh }
\end{aligned}
$$

The translation of $\lambda x . \lambda k . c$ above first translates the body c, then creates a new function f parameterized on x as well as the free variables y_{1} to y_{n} of the translated body

It then adds f to the environment σ replaces the entire lambda with $\left(f y_{n} \ldots y_{n}\right)$

When applied to an entire program, this has the effect of eliminating all nested λs

Source Language

λ-calculus with pairs and integers

Intermediate Language \#1
λ-calculus in CPS

Intermediate Language \#2
λ-calculus in CPS + Closure Conversion

Machine Code
Simple RISC-like Assembly

Code Generation

$$
\begin{aligned}
\mathcal{P} \llbracket \subset \rrbracket= & \text { main : } \mathcal{C} \llbracket \subset \rrbracket ; \\
& \text { halt : }
\end{aligned}
$$

Code Generation

$$
\mathcal{P} \llbracket \text { let } x_{f}=\lambda x_{1} \ldots \lambda x_{n} . \lambda k . c \text { in } p \rrbracket=x_{f}: \operatorname{mov} x_{1}, a_{1} ;
$$

$$
\begin{aligned}
& \operatorname{mov} x_{n}, a_{n} ; \\
& \operatorname{mov} k, r a ; \\
& \mathcal{C} \llbracket c \rrbracket ; \\
& \mathcal{P} \llbracket p \rrbracket
\end{aligned}
$$

Code Generation

$$
\mathcal{P} \llbracket \text { let } x_{c}=\lambda x_{1} \ldots \lambda x_{n} . c \text { in } p \rrbracket=x_{c}: \operatorname{mov} x_{1}, a_{1} ;
$$

$\operatorname{mov} x_{n}, a_{n} ;$
$\mathcal{C} \llbracket \llbracket \rrbracket ;$
$\mathcal{P} \llbracket \rrbracket \rrbracket$

Code Generation

$$
\mathcal{C} \llbracket \text { let } x=n \text { in } c \rrbracket=\underset{ }{\operatorname{Cov} \llbracket c \rrbracket} x, n \text {; }
$$

Code Generation

$$
\mathcal{C} \llbracket \text { let } x_{1}=x_{2} \text { in } c \rrbracket=\operatorname{mov}_{\mathcal{C} \llbracket c \rrbracket} x_{1}, x_{2} ;
$$

Code Generation

$$
\begin{aligned}
\mathcal{C} \llbracket \text { let } x=x_{1}+x_{2} \text { in } c \rrbracket= & \operatorname{add} x_{1}, x_{2}, x ; \\
& \mathcal{C} \llbracket c \rrbracket
\end{aligned}
$$

Code Generation

$$
\begin{aligned}
\mathcal{C} \llbracket \text { let } x=\left(x_{1}, x_{2}\right) \text { in } c \rrbracket= & \text { malloc } 2 ; \\
& \text { mov } x, r_{0} ; \\
& \text { store } x_{1}, x[0] ; \\
& \text { store } x_{2}, x[1] ; \\
& \mathcal{C} \llbracket c \rrbracket
\end{aligned}
$$

Code Generation

$\mathcal{C} \llbracket$ let $x=\# i x_{1}$ in $c \rrbracket=\operatorname{load} x, x_{1}[i-1]$;
 $\mathcal{C} \llbracket c \rrbracket$

Code Generation

$$
\mathcal{C} \llbracket x k x_{1} \ldots x_{n} \rrbracket=\operatorname{mov} a_{1}, x_{1} ;
$$

$\operatorname{mov} a_{n}, x_{n} ;$
$\operatorname{mov} r a, k ;$
jump x

Final Thoughts

Note that we assume an infinite supply of registers. We would need to do register allocation and possibly spill registers to a stack to obtain working code.

Also, while this translation is very simple, it is not particularly efficient. For example, we are doing a lot of register moves when calling functions and when starting the function body, which could be optimized.

