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Announcements
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Type Inference

In languages like OCaml, programmers don't have to annotate their
programs with VX. 7 or e [T]

We can also write
double (fun x — x+1) 7

and OCaml will infer that the polymorphic function double is
instantiated at the type int.



ML Polymorphism

However, polymorphism in OCaml and other MLs, has some
restrictions to ensure that type inference remains decidable



ML Polymorphism

However, polymorphism in OCaml and other MLs, has some
restrictions to ensure that type inference remains decidable

These restrictions, called prenex polymorphism, stipulate that Vs
may only appear as top-most constructors in a type



ML Polymorphism

However, polymorphism in OCaml and other MLs, has some
restrictions to ensure that type inference remains decidable

These restrictions, called prenex polymorphism, stipulate that Vs
may only appear as top-most constructors in a type

Examples



ML Polymorphism

However, polymorphism in OCaml and other MLs, has some
restrictions to ensure that type inference remains decidable

These restrictions, called prenex polymorphism, stipulate that Vs
may only appear as top-most constructors in a type

Examples

e Prenex: Va. o« — «



ML Polymorphism

However, polymorphism in OCaml and other MLs, has some
restrictions to ensure that type inference remains decidable

These restrictions, called prenex polymorphism, stipulate that Vs
may only appear as top-most constructors in a type

Examples

e Prenex: Va.a — «
e Not prenex: (Va. a — a) — int



ML Polymorphism

However, polymorphism in OCaml and other MLs, has some
restrictions to ensure that type inference remains decidable

These restrictions, called prenex polymorphism, stipulate that Vs
may only appear as top-most constructors in a type

Examples

e Prenex: Va.a — «
e Not prenex: (Va. a — a) — int

These restrictions have the following practical ramifications:



ML Polymorphism

However, polymorphism in OCaml and other MLs, has some
restrictions to ensure that type inference remains decidable

These restrictions, called prenex polymorphism, stipulate that Vs
may only appear as top-most constructors in a type

Examples

e Prenex: Va.a — «
e Not prenex: (Va. a — a) — int

These restrictions have the following practical ramifications:
e (Can'tinstantiate type variables with polymorphic types



ML Polymorphism

However, polymorphism in OCaml and other MLs, has some
restrictions to ensure that type inference remains decidable

These restrictions, called prenex polymorphism, stipulate that Vs
may only appear as top-most constructors in a type

Examples

e Prenex: Va.a — «
e Not prenex: (Va. a — a) — int

These restrictions have the following practical ramifications:
e (Can'tinstantiate type variables with polymorphic types
e Can't put a polymorphic type on the left of an arrow
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Example

These restrictions mean that certain terms that are typable in
System F are not typable in ML!

0Caml version 4.01.0

# fun x > x X;;

Error: This expression has type 'a -> 'b
but an expression was expected of type 'a
The type variable 'a occurs inside 'a -> 'b
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Type Inference

In the simply-typed lambda calculus, we explicitly annotate the
type of function arguments: A\x:7.e

These annotations are used in the typing rule for functions

Suppose that we didn't want to provide type annotations for
function arguments... We would need to guess a 7 to put into the
type context!

Can we still type check our program without these type
annotations? For the simply typed-lambda calculus (and many of
the extensions we have considered so far), the answer is yes: we
can infer (or reconstruct) the types of a program
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Example

Consider the following program:
Aa. \b. Ac.ifa (b+ 1) then belsec

Informal inference:

e b must beint

e g must be some kind of function

the argument type of a must be the same as b + 1
the result type of a must be bool

the type of ¢ must be the same as b

Putting all these pieces together:
Aa:int — bool. \b:int. Ac:int.ifa (b + 1) then belse ¢
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Constriant-Based Inference

To automate type inference, we introduce a judgment
MEe:r|C

Given a typing context ' and an expression e, it generates a set of
constraints—equations between type

If these constraints are solvable, then e can be well-typed in I’

A solution to a set of constarints is a type substitution o that, when
applied to each equation makes the types syntactically equal.

In what follows, we'll work with the following langauge

ex=x|MT.eleres|n|e+e
To=int | X| 1 =
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Constraint-Based Typing Judgment

x:tel
L CTWar _ CTint
F=x:7 |0 [=n:int] 0

|_|_€1:T1|C1 r|_€2:T2|C2
I_f—& —|—€2:int|C1 UCzU{ﬁ :int,Tzzint}

CT-Add

r,X:ﬂ l_eiTz | C

CT-Abs
NEXcm.em =7 | C

ke |G The:n |G
Xfresh C=GUGU{n =7 —X}

MlEeje:X|C

CT-App
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Solving Constraints

A type substitution is a finite map from type variables to types

Example: the substitution

[X — int, Y — int — int]
maps type variable Xto int and Y to int — int
Note that the same variable may occur in both the domain and
range of a substitution. In that case, the intention is that the
substitutions are performed simultaneously.
Example: the substitution

[X = int, Y — (int — X)]

maps Y to int — X.
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Type Substitution

Formally, we define substitution of type variables as follows:

T fX—=T1€EC0C
a(X) = ) . .
X if Xnotinthe domain of o

o(int) = int
o(t = 7)=0(r) = o(7)

Note that we don't need to worry about avoiding variable capture,
since there are no binders in the language of types

Given two substitutions o and ¢’, we write o o ¢’ for their
composition: (o o o’)(1) = a(o’(7)).
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Unification

Our constraints are of the form 7 = 7/

We say that a substitution o unifies constraint 7 = 7/ if

o(r) = o(r)

We say that substitution o satisfies (or unifies) set of constraints C if
o unifies every constraint in C

So to solve a set of constraints C, we need to find a substitution
that unifies C

If "+ e:7 | Cand a solution for Cis o, then e has type 7" under T,
where o(7) = 7. On the other hand, if there are no substitutions
that satisfy C, then e is not typeable

Z



Unification

unify(0) =[] (the empty substitution)
unify({r = 7'} u ) =ifr = 7’ then
unify(C")
else if 7 = Xand X not a free variable of 7’ then
unify(C'{7'/X}) o [X — 7]
else if 7 = Xand X not a free variable of T then
unify(C'{r/X}) o [X +— 7]
elseifr =7, = 7 and 7' = 7 — 7/ then
unify(C' U {mo = 75,71 = 11})
else
fail
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Unification Properties

The check that Xis not a free variable of the other type ensures that
the algorithm doesn't produce a cyclic substitution (e.g.,
X — (X = X)), which doesn't make sense with our finite types

The unification algorithm always terminates.

Moreover, the solution, if it exists, is the most general solution: if
o = unify(C) and ¢’ is a solution to C, then there is some ¢” such
that o’ = (0” 0 o)



