

CS 4110

Programming Languages & Logics

Lecture 24
Type Inference

29 October 2014

Announcements

• PS 6 due today

• PS 7 out today

2

Type Inference

In languages like OCaml, programmers don’t have to annotate their
programs with ∀X. τ or e [τ]

3

Type Inference

In languages like OCaml, programmers don’t have to annotate their
programs with ∀X. τ or e [τ]

For example, we can write

let double f x = f (f x)

and OCaml will figure out that the type is

('a → 'a) → 'a → 'a

which is equivalent to the System F type:
∀A. (A → A) → A → A

3

Type Inference

In languages like OCaml, programmers don’t have to annotate their
programs with ∀X. τ or e [τ]

We can also write

double (fun x → x+1) 7

and OCaml will infer that the polymorphic function double is
instantiated at the type int.

3

ML Polymorphism

However, polymorphism in OCaml and other MLs, has some
restrictions to ensure that type inference remains decidable

These restrictions, called prenex polymorphism, stipulate that ∀s
may only appear as top-most constructors in a type

Examples

• Prenex: ∀α. α → α

• Not prenex: (∀α. α → α) → int

These restrictions have the following practical ramifications:

• Can’t instantiate type variables with polymorphic types
• Can’t put a polymorphic type on the left of an arrow

4

ML Polymorphism

However, polymorphism in OCaml and other MLs, has some
restrictions to ensure that type inference remains decidable

These restrictions, called prenex polymorphism, stipulate that ∀s
may only appear as top-most constructors in a type

Examples

• Prenex: ∀α. α → α

• Not prenex: (∀α. α → α) → int

These restrictions have the following practical ramifications:

• Can’t instantiate type variables with polymorphic types
• Can’t put a polymorphic type on the left of an arrow

4

ML Polymorphism

However, polymorphism in OCaml and other MLs, has some
restrictions to ensure that type inference remains decidable

These restrictions, called prenex polymorphism, stipulate that ∀s
may only appear as top-most constructors in a type

Examples

• Prenex: ∀α. α → α

• Not prenex: (∀α. α → α) → int

These restrictions have the following practical ramifications:

• Can’t instantiate type variables with polymorphic types
• Can’t put a polymorphic type on the left of an arrow

4

ML Polymorphism

However, polymorphism in OCaml and other MLs, has some
restrictions to ensure that type inference remains decidable

These restrictions, called prenex polymorphism, stipulate that ∀s
may only appear as top-most constructors in a type

Examples

• Prenex: ∀α. α → α

• Not prenex: (∀α. α → α) → int

These restrictions have the following practical ramifications:

• Can’t instantiate type variables with polymorphic types
• Can’t put a polymorphic type on the left of an arrow

4

ML Polymorphism

However, polymorphism in OCaml and other MLs, has some
restrictions to ensure that type inference remains decidable

These restrictions, called prenex polymorphism, stipulate that ∀s
may only appear as top-most constructors in a type

Examples

• Prenex: ∀α. α → α

• Not prenex: (∀α. α → α) → int

These restrictions have the following practical ramifications:

• Can’t instantiate type variables with polymorphic types
• Can’t put a polymorphic type on the left of an arrow

4

ML Polymorphism

However, polymorphism in OCaml and other MLs, has some
restrictions to ensure that type inference remains decidable

These restrictions, called prenex polymorphism, stipulate that ∀s
may only appear as top-most constructors in a type

Examples

• Prenex: ∀α. α → α

• Not prenex: (∀α. α → α) → int

These restrictions have the following practical ramifications:

• Can’t instantiate type variables with polymorphic types
• Can’t put a polymorphic type on the left of an arrow

4

ML Polymorphism

However, polymorphism in OCaml and other MLs, has some
restrictions to ensure that type inference remains decidable

These restrictions, called prenex polymorphism, stipulate that ∀s
may only appear as top-most constructors in a type

Examples

• Prenex: ∀α. α → α

• Not prenex: (∀α. α → α) → int

These restrictions have the following practical ramifications:
• Can’t instantiate type variables with polymorphic types

• Can’t put a polymorphic type on the left of an arrow

4

ML Polymorphism

However, polymorphism in OCaml and other MLs, has some
restrictions to ensure that type inference remains decidable

These restrictions, called prenex polymorphism, stipulate that ∀s
may only appear as top-most constructors in a type

Examples

• Prenex: ∀α. α → α

• Not prenex: (∀α. α → α) → int

These restrictions have the following practical ramifications:
• Can’t instantiate type variables with polymorphic types
• Can’t put a polymorphic type on the left of an arrow

4

Example

These restrictions mean that certain terms that are typable in
System F are not typable in ML!

OCaml version 4.01.0

fun x -> x x;;
Error: This expression has type 'a -> 'b

but an expression was expected of type 'a
The type variable 'a occurs inside 'a -> 'b

5

Example

These restrictions mean that certain terms that are typable in
System F are not typable in ML!

OCaml version 4.01.0

fun x -> x x;;
Error: This expression has type 'a -> 'b

but an expression was expected of type 'a
The type variable 'a occurs inside 'a -> 'b

5

Type Inference

In the simply-typed lambda calculus, we explicitly annotate the
type of function arguments: λx :τ. e

These annotations are used in the typing rule for functions

Suppose that we didn’t want to provide type annotations for
function arguments... We would need to guess a τ to put into the
type context!

Can we still type check our program without these type
annotations? For the simply typed-lambda calculus (and many of
the extensions we have considered so far), the answer is yes: we
can infer (or reconstruct) the types of a program

6

Type Inference

In the simply-typed lambda calculus, we explicitly annotate the
type of function arguments: λx :τ. e

These annotations are used in the typing rule for functions

Suppose that we didn’t want to provide type annotations for
function arguments... We would need to guess a τ to put into the
type context!

Can we still type check our program without these type
annotations? For the simply typed-lambda calculus (and many of
the extensions we have considered so far), the answer is yes: we
can infer (or reconstruct) the types of a program

6

Type Inference

In the simply-typed lambda calculus, we explicitly annotate the
type of function arguments: λx :τ. e

These annotations are used in the typing rule for functions

Suppose that we didn’t want to provide type annotations for
function arguments... We would need to guess a τ to put into the
type context!

Can we still type check our program without these type
annotations? For the simply typed-lambda calculus (and many of
the extensions we have considered so far), the answer is yes: we
can infer (or reconstruct) the types of a program

6

Type Inference

In the simply-typed lambda calculus, we explicitly annotate the
type of function arguments: λx :τ. e

These annotations are used in the typing rule for functions

Suppose that we didn’t want to provide type annotations for
function arguments... We would need to guess a τ to put into the
type context!

Can we still type check our program without these type
annotations? For the simply typed-lambda calculus (and many of
the extensions we have considered so far), the answer is yes: we
can infer (or reconstruct) the types of a program

6

Example

Consider the following program:
λa. λb. λc. if a (b+ 1) then b else c

Informal inference:

• bmust be int
• amust be some kind of function
• the argument type of amust be the same as b+ 1
• the result type of amust be bool
• the type of cmust be the same as b

Putting all these pieces together:
λa : int → bool. λb : int. λc : int. if a (b+ 1) then b else c

7

Example

Consider the following program:
λa. λb. λc. if a (b+ 1) then b else c

Informal inference:

• bmust be int
• amust be some kind of function
• the argument type of amust be the same as b+ 1
• the result type of amust be bool
• the type of cmust be the same as b

Putting all these pieces together:
λa : int → bool. λb : int. λc : int. if a (b+ 1) then b else c

7

Example

Consider the following program:
λa. λb. λc. if a (b+ 1) then b else c

Informal inference:
• bmust be int

• amust be some kind of function
• the argument type of amust be the same as b+ 1
• the result type of amust be bool
• the type of cmust be the same as b

Putting all these pieces together:
λa : int → bool. λb : int. λc : int. if a (b+ 1) then b else c

7

Example

Consider the following program:
λa. λb. λc. if a (b+ 1) then b else c

Informal inference:
• bmust be int
• amust be some kind of function

• the argument type of amust be the same as b+ 1
• the result type of amust be bool
• the type of cmust be the same as b

Putting all these pieces together:
λa : int → bool. λb : int. λc : int. if a (b+ 1) then b else c

7

Example

Consider the following program:
λa. λb. λc. if a (b+ 1) then b else c

Informal inference:
• bmust be int
• amust be some kind of function
• the argument type of amust be the same as b+ 1

• the result type of amust be bool
• the type of cmust be the same as b

Putting all these pieces together:
λa : int → bool. λb : int. λc : int. if a (b+ 1) then b else c

7

Example

Consider the following program:
λa. λb. λc. if a (b+ 1) then b else c

Informal inference:
• bmust be int
• amust be some kind of function
• the argument type of amust be the same as b+ 1
• the result type of amust be bool

• the type of cmust be the same as b

Putting all these pieces together:
λa : int → bool. λb : int. λc : int. if a (b+ 1) then b else c

7

Example

Consider the following program:
λa. λb. λc. if a (b+ 1) then b else c

Informal inference:
• bmust be int
• amust be some kind of function
• the argument type of amust be the same as b+ 1
• the result type of amust be bool
• the type of cmust be the same as b

Putting all these pieces together:
λa : int → bool. λb : int. λc : int. if a (b+ 1) then b else c

7

Example

Consider the following program:
λa. λb. λc. if a (b+ 1) then b else c

Informal inference:
• bmust be int
• amust be some kind of function
• the argument type of amust be the same as b+ 1
• the result type of amust be bool
• the type of cmust be the same as b

Putting all these pieces together:
λa : int → bool. λb : int. λc : int. if a (b+ 1) then b else c

7

Constriant-Based Inference

To automate type inference, we introduce a judgment

Γ ⊢ e :τ | C

Given a typing context Γ and an expression e, it generates a set of
constraints—equations between type

If these constraints are solvable, then e can be well-typed in Γ

A solution to a set of constarints is a type substitution σ that, when
applied to each equation makes the types syntactically equal.

In what follows, we’ll work with the following langauge

e ::= x | λx :τ. e | e1 e2 | n | e1 + e2
τ ::= int | X | τ1 → τ2

8

Constriant-Based Inference

To automate type inference, we introduce a judgment

Γ ⊢ e :τ | C

Given a typing context Γ and an expression e, it generates a set of
constraints—equations between type

If these constraints are solvable, then e can be well-typed in Γ

A solution to a set of constarints is a type substitution σ that, when
applied to each equation makes the types syntactically equal.

In what follows, we’ll work with the following langauge

e ::= x | λx :τ. e | e1 e2 | n | e1 + e2
τ ::= int | X | τ1 → τ2

8

Constriant-Based Inference

To automate type inference, we introduce a judgment

Γ ⊢ e :τ | C

Given a typing context Γ and an expression e, it generates a set of
constraints—equations between type

If these constraints are solvable, then e can be well-typed in Γ

A solution to a set of constarints is a type substitution σ that, when
applied to each equation makes the types syntactically equal.

In what follows, we’ll work with the following langauge

e ::= x | λx :τ. e | e1 e2 | n | e1 + e2
τ ::= int | X | τ1 → τ2

8

Constriant-Based Inference

To automate type inference, we introduce a judgment

Γ ⊢ e :τ | C

Given a typing context Γ and an expression e, it generates a set of
constraints—equations between type

If these constraints are solvable, then e can be well-typed in Γ

A solution to a set of constarints is a type substitution σ that, when
applied to each equation makes the types syntactically equal.

In what follows, we’ll work with the following langauge

e ::= x | λx :τ. e | e1 e2 | n | e1 + e2
τ ::= int | X | τ1 → τ2

8

Constraint-Based Typing Judgment

x :τ ∈ Γ

Γ ⊢ x :τ | ∅
CT-Var

Γ ⊢ n : int | ∅
CT-Int

Γ ⊢ e1 :τ1 | C1 Γ ⊢ e2 :τ2 | C2

Γ ⊢ e1 + e2 : int | C1 ∪ C2 ∪ {τ1 = int, τ2 = int}
CT-Add

Γ, x :τ1 ⊢ e :τ2 | C
Γ ⊢ λx :τ1. e :τ1 → τ2 | C

CT-Abs

Γ ⊢ e1 :τ1 | C1 Γ ⊢ e2 :τ2 | C2

X fresh C′ = C1 ∪ C2 ∪ {τ1 = τ2 → X}
Γ ⊢ e1 e2 :X | C′

CT-App

9

Constraint-Based Typing Judgment

x :τ ∈ Γ

Γ ⊢ x :τ | ∅
CT-Var

Γ ⊢ n : int | ∅
CT-Int

Γ ⊢ e1 :τ1 | C1 Γ ⊢ e2 :τ2 | C2

Γ ⊢ e1 + e2 : int | C1 ∪ C2 ∪ {τ1 = int, τ2 = int}
CT-Add

Γ, x :τ1 ⊢ e :τ2 | C
Γ ⊢ λx :τ1. e :τ1 → τ2 | C

CT-Abs

Γ ⊢ e1 :τ1 | C1 Γ ⊢ e2 :τ2 | C2

X fresh C′ = C1 ∪ C2 ∪ {τ1 = τ2 → X}
Γ ⊢ e1 e2 :X | C′

CT-App

9

Constraint-Based Typing Judgment

x :τ ∈ Γ

Γ ⊢ x :τ | ∅
CT-Var

Γ ⊢ n : int | ∅
CT-Int

Γ ⊢ e1 :τ1 | C1 Γ ⊢ e2 :τ2 | C2

Γ ⊢ e1 + e2 : int | C1 ∪ C2 ∪ {τ1 = int, τ2 = int}
CT-Add

Γ, x :τ1 ⊢ e :τ2 | C
Γ ⊢ λx :τ1. e :τ1 → τ2 | C

CT-Abs

Γ ⊢ e1 :τ1 | C1 Γ ⊢ e2 :τ2 | C2

X fresh C′ = C1 ∪ C2 ∪ {τ1 = τ2 → X}
Γ ⊢ e1 e2 :X | C′

CT-App

9

Constraint-Based Typing Judgment

x :τ ∈ Γ

Γ ⊢ x :τ | ∅
CT-Var

Γ ⊢ n : int | ∅
CT-Int

Γ ⊢ e1 :τ1 | C1 Γ ⊢ e2 :τ2 | C2

Γ ⊢ e1 + e2 : int | C1 ∪ C2 ∪ {τ1 = int, τ2 = int}
CT-Add

Γ, x :τ1 ⊢ e :τ2 | C
Γ ⊢ λx :τ1. e :τ1 → τ2 | C

CT-Abs

Γ ⊢ e1 :τ1 | C1 Γ ⊢ e2 :τ2 | C2

X fresh C′ = C1 ∪ C2 ∪ {τ1 = τ2 → X}
Γ ⊢ e1 e2 :X | C′

CT-App

9

Constraint-Based Typing Judgment

x :τ ∈ Γ

Γ ⊢ x :τ | ∅
CT-Var

Γ ⊢ n : int | ∅
CT-Int

Γ ⊢ e1 :τ1 | C1 Γ ⊢ e2 :τ2 | C2

Γ ⊢ e1 + e2 : int | C1 ∪ C2 ∪ {τ1 = int, τ2 = int}
CT-Add

Γ, x :τ1 ⊢ e :τ2 | C
Γ ⊢ λx :τ1. e :τ1 → τ2 | C

CT-Abs

Γ ⊢ e1 :τ1 | C1 Γ ⊢ e2 :τ2 | C2

X fresh C′ = C1 ∪ C2 ∪ {τ1 = τ2 → X}
Γ ⊢ e1 e2 :X | C′

CT-App

9

Solving Constraints

A type substitution is a finite map from type variables to types

Example: the substitution

[X 7→ int, Y 7→ int → int]

maps type variable X to int and Y to int → int

Note that the same variable may occur in both the domain and
range of a substitution. In that case, the intention is that the
substitutions are performed simultaneously.

Example: the substitution

[X 7→ int, Y 7→ (int → X)]

maps Y to int → X.

10

Solving Constraints

A type substitution is a finite map from type variables to types

Example: the substitution

[X 7→ int, Y 7→ int → int]

maps type variable X to int and Y to int → int

Note that the same variable may occur in both the domain and
range of a substitution. In that case, the intention is that the
substitutions are performed simultaneously.

Example: the substitution

[X 7→ int, Y 7→ (int → X)]

maps Y to int → X.

10

Solving Constraints

A type substitution is a finite map from type variables to types

Example: the substitution

[X 7→ int, Y 7→ int → int]

maps type variable X to int and Y to int → int

Note that the same variable may occur in both the domain and
range of a substitution. In that case, the intention is that the
substitutions are performed simultaneously.

Example: the substitution

[X 7→ int, Y 7→ (int → X)]

maps Y to int → X.

10

Solving Constraints

A type substitution is a finite map from type variables to types

Example: the substitution

[X 7→ int, Y 7→ int → int]

maps type variable X to int and Y to int → int

Note that the same variable may occur in both the domain and
range of a substitution. In that case, the intention is that the
substitutions are performed simultaneously.

Example: the substitution

[X 7→ int, Y 7→ (int → X)]

maps Y to int → X.

10

Type Substitution

Formally, we define substitution of type variables as follows:

σ(X) =

{
τ if X 7→ τ ∈ σ

X if X not in the domain of σ

σ(int) = int
σ(τ → τ ′) = σ(τ) → σ(τ ′)

Note that we don’t need to worry about avoiding variable capture,
since there are no binders in the language of types

Given two substitutions σ and σ′, we write σ ◦ σ′ for their
composition: (σ ◦ σ′)(τ) = σ(σ′(τ)).

11

Type Substitution

Formally, we define substitution of type variables as follows:

σ(X) =

{
τ if X 7→ τ ∈ σ

X if X not in the domain of σ

σ(int) = int
σ(τ → τ ′) = σ(τ) → σ(τ ′)

Note that we don’t need to worry about avoiding variable capture,
since there are no binders in the language of types

Given two substitutions σ and σ′, we write σ ◦ σ′ for their
composition: (σ ◦ σ′)(τ) = σ(σ′(τ)).

11

Type Substitution

Formally, we define substitution of type variables as follows:

σ(X) =

{
τ if X 7→ τ ∈ σ

X if X not in the domain of σ

σ(int) = int

σ(τ → τ ′) = σ(τ) → σ(τ ′)

Note that we don’t need to worry about avoiding variable capture,
since there are no binders in the language of types

Given two substitutions σ and σ′, we write σ ◦ σ′ for their
composition: (σ ◦ σ′)(τ) = σ(σ′(τ)).

11

Type Substitution

Formally, we define substitution of type variables as follows:

σ(X) =

{
τ if X 7→ τ ∈ σ

X if X not in the domain of σ

σ(int) = int
σ(τ → τ ′) = σ(τ) → σ(τ ′)

Note that we don’t need to worry about avoiding variable capture,
since there are no binders in the language of types

Given two substitutions σ and σ′, we write σ ◦ σ′ for their
composition: (σ ◦ σ′)(τ) = σ(σ′(τ)).

11

Type Substitution

Formally, we define substitution of type variables as follows:

σ(X) =

{
τ if X 7→ τ ∈ σ

X if X not in the domain of σ

σ(int) = int
σ(τ → τ ′) = σ(τ) → σ(τ ′)

Note that we don’t need to worry about avoiding variable capture,
since there are no binders in the language of types

Given two substitutions σ and σ′, we write σ ◦ σ′ for their
composition: (σ ◦ σ′)(τ) = σ(σ′(τ)).

11

Type Substitution

Formally, we define substitution of type variables as follows:

σ(X) =

{
τ if X 7→ τ ∈ σ

X if X not in the domain of σ

σ(int) = int
σ(τ → τ ′) = σ(τ) → σ(τ ′)

Note that we don’t need to worry about avoiding variable capture,
since there are no binders in the language of types

Given two substitutions σ and σ′, we write σ ◦ σ′ for their
composition: (σ ◦ σ′)(τ) = σ(σ′(τ)).

11

Unification

Our constraints are of the form τ = τ ′

We say that a substitution σ unifies constraint τ = τ ′ if
σ(τ) = σ(τ ′)

We say that substitution σ satisfies (or unifies) set of constraints C if
σ unifies every constraint in C

So to solve a set of constraints C, we need to find a substitution
that unifies C

If Γ ⊢ e :τ | C and a solution for C is σ, then e has type τ ′ under Γ,
where σ(τ) = τ ′. On the other hand, if there are no substitutions
that satisfy C, then e is not typeable

12

Unification

Our constraints are of the form τ = τ ′

We say that a substitution σ unifies constraint τ = τ ′ if
σ(τ) = σ(τ ′)

We say that substitution σ satisfies (or unifies) set of constraints C if
σ unifies every constraint in C

So to solve a set of constraints C, we need to find a substitution
that unifies C

If Γ ⊢ e :τ | C and a solution for C is σ, then e has type τ ′ under Γ,
where σ(τ) = τ ′. On the other hand, if there are no substitutions
that satisfy C, then e is not typeable

12

Unification

Our constraints are of the form τ = τ ′

We say that a substitution σ unifies constraint τ = τ ′ if
σ(τ) = σ(τ ′)

We say that substitution σ satisfies (or unifies) set of constraints C if
σ unifies every constraint in C

So to solve a set of constraints C, we need to find a substitution
that unifies C

If Γ ⊢ e :τ | C and a solution for C is σ, then e has type τ ′ under Γ,
where σ(τ) = τ ′. On the other hand, if there are no substitutions
that satisfy C, then e is not typeable

12

Unification

Our constraints are of the form τ = τ ′

We say that a substitution σ unifies constraint τ = τ ′ if
σ(τ) = σ(τ ′)

We say that substitution σ satisfies (or unifies) set of constraints C if
σ unifies every constraint in C

So to solve a set of constraints C, we need to find a substitution
that unifies C

If Γ ⊢ e :τ | C and a solution for C is σ, then e has type τ ′ under Γ,
where σ(τ) = τ ′. On the other hand, if there are no substitutions
that satisfy C, then e is not typeable

12

Unification

Our constraints are of the form τ = τ ′

We say that a substitution σ unifies constraint τ = τ ′ if
σ(τ) = σ(τ ′)

We say that substitution σ satisfies (or unifies) set of constraints C if
σ unifies every constraint in C

So to solve a set of constraints C, we need to find a substitution
that unifies C

If Γ ⊢ e :τ | C and a solution for C is σ, then e has type τ ′ under Γ,
where σ(τ) = τ ′. On the other hand, if there are no substitutions
that satisfy C, then e is not typeable

12

Unification

unify(∅) = [] (the empty substitution)
unify({τ = τ ′} ∪ C′) = if τ = τ ′ then

unify(C′)
else if τ = X and X not a free variable of τ ′ then

unify(C′{τ ′/X}) ◦ [X 7→ τ ′]

else if τ ′ = X and X not a free variable of τ then
unify(C′{τ/X}) ◦ [X 7→ τ]

else if τ = τo → τ1 and τ ′ = τ ′o → τ ′1 then
unify(C′ ∪ {τ0 = τ ′0, τ1 = τ ′1})

else
fail

13

Unification Properties

The check that X is not a free variable of the other type ensures that
the algorithm doesn’t produce a cyclic substitution (e.g.,
X 7→ (X → X)), which doesn’t make sense with our finite types

The unification algorithm always terminates.

Moreover, the solution, if it exists, is the most general solution: if
σ = unify(C) and σ′ is a solution to C, then there is some σ′′ such
that σ′ = (σ′′ ◦ σ)

14

Unification Properties

The check that X is not a free variable of the other type ensures that
the algorithm doesn’t produce a cyclic substitution (e.g.,
X 7→ (X → X)), which doesn’t make sense with our finite types

The unification algorithm always terminates.

Moreover, the solution, if it exists, is the most general solution: if
σ = unify(C) and σ′ is a solution to C, then there is some σ′′ such
that σ′ = (σ′′ ◦ σ)

14

Unification Properties

The check that X is not a free variable of the other type ensures that
the algorithm doesn’t produce a cyclic substitution (e.g.,
X 7→ (X → X)), which doesn’t make sense with our finite types

The unification algorithm always terminates.

Moreover, the solution, if it exists, is the most general solution: if
σ = unify(C) and σ′ is a solution to C, then there is some σ′′ such
that σ′ = (σ′′ ◦ σ)

14

