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Announcements

• Today: Foster office hours 4-5pm

• Wednesday: Mota guest lecture
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Roadmap

Over the last few lectures, we’ve developed a simple type system
for λ-calculus, extensions for handling a number of language
features, and we proved normalization.

Today we’ll develop a substantial extension of the simply-typed
λ-calculus by making the type system polymorphic.
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Polymorphism

Polymorphism generally falls into one of three broad varieties.

• Subtype polymorphism allows values of type τ to masquerade as
values of type τ ′, provided that τ is a subtype of τ ′.

• Ad-hoc polymorphism, also called overloading, allows the same
function name to be used with functions that take different
types of parameters.

• Parametric polymorphism refers to code that is written without
knowledge of the actual type of the arguments; the code is
parametric in the type of the parameters.
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Example

Consider a “doubling” function that takes a function f, and an
integer x, applies f to x, and then applies f to the result:

doubleInt ≜ λf : int → int. λx : int. f (f x)

Now suppose we want the same function for booleans, or
functions...

doubleBool ≜ λf :bool → bool. λx :bool. f (f x)

doubleFn ≜ λf : (int → int) → (int → int). λx : int → int. f (f x)
...
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Abstraction

These examples on the preceding slides violate a fundamental
principle of software engineering:

Definition (Abstraction Principle)

Every major piece of functionality in a program should be
implemented in just one place in the code. When similar
functionality is provided by distinct pieces of code, the two should
be combined into one by abstracting out the varying parts.

In the doubling functions, the varying parts are the types.

We need a way to abstract out the type of the doubling operation,
and later instantiate it with different concrete types.
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Polymorphic λ-Calculus

Invented indepedently in 1972-1974 by a computer scientist John
Reynolds and a logician Jean-Yves Girard (who called it System F).

Commonly used as a basis for studying type system extensions

Key feature: function abstraction and application at the type level!

Notation:
• ΛX. e: type abstraction
• e[τ ]: type application

Example:
λX. λx :X. x
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Polymorphic λ-Calculus

Syntax

e ::= n | x | λx :τ. e | e1 e2 | ΛX. e | e [τ ]
v ::= n | λx :τ. e | ΛX. e

Dynamic Semantics

E ::= [·] | E e | v E | E [τ ]

e → e′

E[e] → E[e′] (λx :τ. e) v → e{v/x} (ΛX. e) [τ ] → e{τ/X}
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Typing Judgment

Type Syntax

τ ::= int | τ1 → τ2 | X | ∀X. τ

Typing Judgment: ∆, Γ ⊢ e :τ
• Γ a mapping from variables to types
• ∆ a set of types in scope
• e an expression
• τ a type
Type Well-Formedness: ∆ ⊢ τ ok
• ∆ a set of types in scope
• τ a type
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Typing Rules

∆, Γ ⊢ n : int

Γ(x) = τ

∆, Γ ⊢ x :τ

∆, Γ, x :τ ⊢ e :τ ′ ∆ ⊢ τ ok

∆, Γ ⊢ λx :τ. e :τ → τ ′
∆, Γ ⊢ e1 :τ → τ ′ ∆, Γ ⊢ e2 :τ

∆, Γ ⊢ e1 e2 :τ ′

∆ ∪ {X}, Γ ⊢ e :τ

∆, Γ ⊢ ΛX. e :∀X. τ
∆, Γ ⊢ e :∀X. τ ′ ∆ ⊢ τ ok

∆, Γ ⊢ e [τ ] :τ ′{τ/X}

10



Typing Rules

∆, Γ ⊢ n : int
Γ(x) = τ

∆, Γ ⊢ x :τ

∆, Γ, x :τ ⊢ e :τ ′ ∆ ⊢ τ ok

∆, Γ ⊢ λx :τ. e :τ → τ ′
∆, Γ ⊢ e1 :τ → τ ′ ∆, Γ ⊢ e2 :τ

∆, Γ ⊢ e1 e2 :τ ′

∆ ∪ {X}, Γ ⊢ e :τ

∆, Γ ⊢ ΛX. e :∀X. τ
∆, Γ ⊢ e :∀X. τ ′ ∆ ⊢ τ ok

∆, Γ ⊢ e [τ ] :τ ′{τ/X}

10



Typing Rules

∆, Γ ⊢ n : int
Γ(x) = τ

∆, Γ ⊢ x :τ

∆, Γ, x :τ ⊢ e :τ ′ ∆ ⊢ τ ok

∆, Γ ⊢ λx :τ. e :τ → τ ′

∆, Γ ⊢ e1 :τ → τ ′ ∆, Γ ⊢ e2 :τ

∆, Γ ⊢ e1 e2 :τ ′

∆ ∪ {X}, Γ ⊢ e :τ

∆, Γ ⊢ ΛX. e :∀X. τ
∆, Γ ⊢ e :∀X. τ ′ ∆ ⊢ τ ok

∆, Γ ⊢ e [τ ] :τ ′{τ/X}

10



Typing Rules

∆, Γ ⊢ n : int
Γ(x) = τ

∆, Γ ⊢ x :τ

∆, Γ, x :τ ⊢ e :τ ′ ∆ ⊢ τ ok

∆, Γ ⊢ λx :τ. e :τ → τ ′
∆, Γ ⊢ e1 :τ → τ ′ ∆, Γ ⊢ e2 :τ

∆, Γ ⊢ e1 e2 :τ ′

∆ ∪ {X}, Γ ⊢ e :τ

∆, Γ ⊢ ΛX. e :∀X. τ
∆, Γ ⊢ e :∀X. τ ′ ∆ ⊢ τ ok

∆, Γ ⊢ e [τ ] :τ ′{τ/X}

10



Typing Rules

∆, Γ ⊢ n : int
Γ(x) = τ

∆, Γ ⊢ x :τ

∆, Γ, x :τ ⊢ e :τ ′ ∆ ⊢ τ ok

∆, Γ ⊢ λx :τ. e :τ → τ ′
∆, Γ ⊢ e1 :τ → τ ′ ∆, Γ ⊢ e2 :τ

∆, Γ ⊢ e1 e2 :τ ′

∆ ∪ {X}, Γ ⊢ e :τ

∆, Γ ⊢ ΛX. e :∀X. τ

∆, Γ ⊢ e :∀X. τ ′ ∆ ⊢ τ ok

∆, Γ ⊢ e [τ ] :τ ′{τ/X}

10



Typing Rules

∆, Γ ⊢ n : int
Γ(x) = τ

∆, Γ ⊢ x :τ

∆, Γ, x :τ ⊢ e :τ ′ ∆ ⊢ τ ok

∆, Γ ⊢ λx :τ. e :τ → τ ′
∆, Γ ⊢ e1 :τ → τ ′ ∆, Γ ⊢ e2 :τ

∆, Γ ⊢ e1 e2 :τ ′

∆ ∪ {X}, Γ ⊢ e :τ

∆, Γ ⊢ ΛX. e :∀X. τ
∆, Γ ⊢ e :∀X. τ ′ ∆ ⊢ τ ok

∆, Γ ⊢ e [τ ] :τ ′{τ/X}

10



Type Well-Formedness

X ∈ ∆

∆ ⊢ X ok

∆ ⊢ int ok

∆ ⊢ τ1 ok ∆ ⊢ τ2 ok

∆ ⊢ τ1 → τ2 ok

∆ ∪ {X} ⊢ τ ok

∆ ⊢ ∀X. τ ok
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Example: Doubling Redux

Let’s consider the doubling operation again.

We can write a polymorphic doubling operation as

double ≜ ΛX. λf :X → X. λx :X. f (f x).

The type of this expression is: ∀X. (X → X) → X → X

We can instantiate this on a type, and provide arguments:

double [int] (λn : int. n+ 1) 7
→ (λf : int → int. λx : int. f (f x)) (λn : int. n+ 1) 7
→∗ 9
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Example: Self Application

Recall that in the simply-typed λ-calculus, we had no way of typing
the expression λx. x x.

In the polymorphic λ-calculus, however, we can type this
expression using a polymorphic type:

⊢ λx :∀X. X → X. x [∀X. X → X] x : (∀X. X → X) → (∀X. X → X)

However, all expressions in polymorphic λ-calculus still halt
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Example: Products

We can encode products in polymorphic λ-calculus without
adding any additional types!

The encodings are based on the (untyped) Church encodings:

τ1 × τ2 ≜ ∀R. (τ1 → τ2 → R) → R

(·, ·)≜ ΛT1.ΛT2. λv1 : T1, λv2 : T2.ΛR. λp : (T1 → T2 → R). p v1 v2
π1 ≜ ΛT1.ΛT2. λv : T1 × T2. v [T1] (λx : T1. λy : T2. x)
π2 ≜ ΛT1.ΛT2. λv : T1 × T2. v [T2] (λx : T1. λy : T2. y)

unit≜ ∀R. R → R
()≜ ΛR. λx : R. x
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Example: Sums

Similarly, we can encode sums in polymorphic λ-calculus without
adding any additional types!

Again, the encodings are based on the (untyped) Church
encodings:

τ1 + τ2 ≜ ∀R.(τ1 → R) → (τ2 → R) → R

inl≜ ΛT1.ΛT2. λv1 : T1.ΛR. λb1 : T1 → R. λb2 : T2 → R. b1 v1
inr≜ ΛT1.ΛT2. λv2 : T2.ΛR. λb1 : T1 → R. λb2 : T2 → R. b2 v2

case≜ ΛT1.ΛT2.ΛR. λv :T1 + T2. λb1 :T1 → R. λb2 :T2 → R. v [R] b1 b2

void≜ ∀R. R
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Similarly, we can encode sums in polymorphic λ-calculus without
adding any additional types!

Again, the encodings are based on the (untyped) Church
encodings:
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Type Erasure

The semantics presented above explicitly passes type but in an
implementation, one often wants to eliminate types for efficiency.

The following translation “erases” the types from a polymorphic
λ-calculus expression.

erase(x) = x
erase(λx :τ. e) = λx. erase(e)

erase(e1 e2) = erase(e1) erase(e2)
erase(ΛX. e) = λz. erase(e) where z is fresh for e
erase(e [τ ]) = erase(e) (λx. x)

The following theorem states this translation is adequate:

Theorem (Adequacy)

For all expressions e and e′, we have e → e′ iff erase(e) → erase(e′).
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Type Inference

The type inference (or “type reconstruction”) problem asks
whether, for a given untyped λ-calculus expression e′ there exists a
well-typed System F expression e such that erase(e) = e′

It was shown to be undecidable by Wells in 1994.

See Chapter 23 of Pierce for further discussion, as well as
restrictions for which type reconstruction is decidable.
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