CS 4110

Programming Languages \& Logics

Lecture 18
Definitional Translation and Continuations

15 October 2014

Announcements

- Today: PS 5 out
- Friday: no Foster office hours
- Friday: guest lecture by Clarkson

Products and Let

Syntax

$$
\begin{aligned}
e::= & x \\
& \mid \lambda x \cdot e \\
& \mid e_{1} e_{2} \\
& \mid\left(e_{1}, e_{2}\right) \\
& \mid \# 1 e \\
& \mid \# 2 e \\
& \mid \text { let } x=e_{1} \text { in } e_{2} \\
v::= & \lambda x \cdot e \\
& \mid\left(v_{1}, v_{2}\right)
\end{aligned}
$$

Products and Let

Evaluation Contexts

$$
\begin{aligned}
E::= & {[\cdot] } \\
& \mid E e \\
& \mid v E \\
& \mid(E, e) \\
& \mid(v, E) \\
& \mid \# 1 E \\
& \mid \# 2 E \\
& \mid \text { let } x=E \text { in } e_{2}
\end{aligned}
$$

Products and Let

Semantics

$$
\frac{e \rightarrow e^{\prime}}{E[e] \rightarrow E\left[e^{\prime}\right]}
$$

$$
\overline{(\lambda x . e) v \rightarrow e\{v / x\}} \beta
$$

$$
\begin{gathered}
\# 1\left(v_{1}, v_{2}\right) \rightarrow v_{1} \quad \# 2\left(v_{1}, v_{2}\right) \rightarrow v_{2} \\
\overline{\text { let } x=v \operatorname{in} e \rightarrow e\{v / x\}}
\end{gathered}
$$

Products and Let

Translation

$$
\begin{aligned}
\mathcal{T} \llbracket x \rrbracket & =x \\
\mathcal{T} \llbracket \lambda x \cdot e \rrbracket & =\lambda x \cdot \mathcal{T} \llbracket e \rrbracket \\
\mathcal{T} \llbracket e_{1} e_{2} \rrbracket & =\mathcal{T} \llbracket e_{1} \rrbracket \mathcal{T} \llbracket e_{2} \rrbracket \\
\mathcal{T} \llbracket\left(e_{1}, e_{2}\right) \rrbracket & =(\lambda x \cdot \lambda y \cdot \lambda f \cdot f x y) \mathcal{T} \llbracket e_{1} \rrbracket \mathcal{T} \llbracket e_{2} \rrbracket \\
\mathcal{T} \llbracket \# 1 \rrbracket \rrbracket & =\mathcal{T} \llbracket e \rrbracket(\lambda x \cdot \lambda y \cdot x) \\
\mathcal{T} \llbracket \# 2 \rrbracket \rrbracket & =\mathcal{T} \llbracket e \rrbracket(\lambda x \cdot \lambda y \cdot y) \\
\mathcal{T} \llbracket \text { let } x=e_{1} \text { in } e_{2} \rrbracket & =\left(\lambda x \cdot \mathcal{T} \llbracket e_{2} \rrbracket\right) \mathcal{T} \llbracket e_{1} \rrbracket
\end{aligned}
$$

Laziness

Consider the call-by-name λ-calculus...
Syntax

$$
\begin{aligned}
& e::=x \\
& \mid e_{1} e_{2} \\
& \mid \lambda x \cdot e \\
& v::=\lambda x \cdot e
\end{aligned}
$$

Semantics

$$
\frac{e_{1} \rightarrow e_{1}^{\prime}}{e_{1} e_{2} \rightarrow e_{1}^{\prime} e_{2}}
$$

$$
{\overline{\left(\lambda x . e_{1}\right) e_{2} \rightarrow e_{1}\left\{e_{2} / x\right\}}}^{\beta}
$$

Laziness

Translation

$$
\begin{aligned}
\mathcal{T} \llbracket \llbracket \rrbracket & =x(\lambda y \cdot y) \\
\mathcal{T} \llbracket \lambda x \cdot e \rrbracket & =\lambda x \cdot \mathcal{T} \llbracket \mathbb{}(1) \\
\mathcal{T} \llbracket e_{1} e_{2} \rrbracket & =\mathcal{T} \llbracket e_{1} \rrbracket\left(\lambda z \cdot \mathcal{T} \llbracket e_{2} \rrbracket\right) \quad z \text { is not a free variable of } e_{2}
\end{aligned}
$$

References

Syntax

$$
\begin{aligned}
e:: & =x \\
& \mid \lambda x \cdot e \\
& \mid e_{0} e_{1}
\end{aligned}
$$

$$
v::=\lambda x . e
$$

References

Syntax

$$
\begin{aligned}
e:: & =x \\
& \mid \lambda x \cdot e \\
& \mid e_{0} e_{1} \\
& \mid \text { refe }
\end{aligned}
$$

$$
v::=\lambda x \cdot e
$$

References

Syntax

$$
\begin{aligned}
e::= & x \\
& \mid \lambda x \cdot e \\
& \mid e_{0} e_{1} \\
& \mid \text { refe } e \\
& \mid!e
\end{aligned}
$$

$$
v::=\lambda x \cdot e
$$

References

Syntax

$$
\begin{aligned}
& e::=x \\
& \\
& \\
& \\
& \mid \lambda x \cdot e \\
& \mid e_{0} e_{1} \\
& \mid \text { ref } e \\
& \mid e_{1}:=e_{2} \\
& \\
& v::=\lambda x . e
\end{aligned}
$$

References

Syntax

$$
\begin{aligned}
e::= & x \\
& \mid \lambda x \cdot e \\
& \mid e_{0} e_{1} \\
& \mid \text { refe } \\
& \mid \text { !e } \\
& \mid e_{1}:=e_{2} \\
& \mid \ell \\
v::= & \lambda x \cdot e
\end{aligned}
$$

References

Syntax

$$
\begin{aligned}
e::= & x \\
& \mid \lambda x \cdot e \\
& \mid e_{0} e_{1} \\
& \mid \text { refe } \\
& \mid \text { !e } \\
& \mid e_{1}:=e_{2} \\
& \mid \ell \\
v::= & \lambda x \cdot e \\
& \mid \ell
\end{aligned}
$$

References

Evaluation Contexts

$$
\begin{aligned}
E::= & {[\cdot] } \\
& \mid E e \\
& \mid \vee E
\end{aligned}
$$

References

Evaluation Contexts

$$
\begin{aligned}
E::= & {[\cdot] } \\
& \mid E e \\
& \mid v E \\
& \mid \operatorname{ref} E
\end{aligned}
$$

References

Evaluation Contexts

$$
\begin{aligned}
E:: & =[\cdot] \\
& \mid E e \\
& \mid v E \\
& \mid \text { ref } E \\
& \mid!E
\end{aligned}
$$

References

Evaluation Contexts

$$
\begin{aligned}
E::= & {[\cdot] } \\
& \mid E e \\
& \mid v E \\
& \mid \operatorname{ref} E \\
& \mid!E \\
& \mid E:=e
\end{aligned}
$$

References

Evaluation Contexts

$$
\begin{aligned}
E::= & {[\cdot] } \\
& \mid E e \\
& \mid v E \\
& \mid \operatorname{ref} E \\
& \mid!E \\
& \mid E:=e \\
& \mid v:=E
\end{aligned}
$$

References

Semantics

$$
\begin{gathered}
\frac{\langle\sigma, e\rangle \rightarrow\left\langle\sigma^{\prime}, e^{\prime}\right\rangle}{\langle\sigma, E[e]\rangle \rightarrow\left\langle\sigma^{\prime}, E\left[e^{\prime}\right]\right\rangle} \quad \overline{\langle\sigma,(\lambda x . e) v\rangle \rightarrow\langle\sigma, e\{v / x\}\rangle} \beta \\
\frac{\ell \notin \operatorname{dom}(\sigma)}{\langle\sigma, \text { ref } v\rangle \rightarrow\langle\sigma[\ell \mapsto v], \ell\rangle} \quad \frac{\sigma(\ell)=v}{\langle\sigma,!\ell\rangle \rightarrow\langle\sigma, v\rangle} \\
\overline{\langle\sigma, \ell:=v\rangle \rightarrow\langle\sigma[\ell \mapsto v], v\rangle}
\end{gathered}
$$

References

Translation
...left as an exercise to the reader ;-)

Adequacy

How do we know if a translation is correct?

Adequacy

How do we know if a translation is correct?
Every target evaluation should represent a source evaluation...

Definition (Soundness)

$\forall e \in \operatorname{Exp}_{\text {src }}$. if $\mathcal{T} \llbracket e \rrbracket \rightarrow_{\text {trg }}^{*} v^{\prime}$ then $\exists v . e \rightarrow_{\text {src }}^{*} v$ and v^{\prime} equivalent to v

Adequacy

How do we know if a translation is correct?
Every target evaluation should represent a source evaluation...

Definition (Soundness)

$\forall e \in \operatorname{Exp}_{\mathrm{src}}$. if $\mathcal{T} \llbracket e \rrbracket \rightarrow_{\mathrm{trg}}^{*} v^{\prime}$ then $\exists v . e \rightarrow_{\mathrm{src}}^{*} v$ and v^{\prime} equivalent to v
...and every source evaluation should have a target evaluation:
Definition (Completeness)
$\forall e \in \boldsymbol{E x p}_{\mathrm{src}}$. if $e \rightarrow_{\mathrm{src}}^{*} v$ then $\exists v^{\prime} . \mathcal{T} \llbracket e \rrbracket \rightarrow_{\mathrm{trg}}^{*} v^{\prime}$ and v^{\prime} equivalent to v

Continuations

In the preceding translations, the control structure of the source language was translated directly into the corresponding control structure in the target language.

For example:

$$
\begin{aligned}
& \mathcal{T} \llbracket \lambda x \cdot e \rrbracket=\lambda x \cdot \mathcal{T} \llbracket e \rrbracket \\
& \mathcal{T} \llbracket e_{1} e_{2} \rrbracket=\mathcal{T} \llbracket e_{1} \rrbracket \mathcal{T} \llbracket e_{2} \rrbracket
\end{aligned}
$$

What can go wrong with this approach?

Continuations

- A snippet of code that represents "the rest of the program"
- Can be used directly by programmers...
- ...or in program transformations by a compiler
- Make the control flow of the program explicit
- Also useful for defining the meaning of features like exceptions

Example

Consider the following expression:

$$
(\lambda x \cdot x)((1+2)+3)+4
$$

Example

Consider the following expression:

$$
(\lambda x \cdot x)((1+2)+3)+4
$$

If we make all of the continuations explicit, we obtain the following:

$$
k_{0}=\lambda v \cdot(\lambda x \cdot x) v
$$

Example

Consider the following expression:

$$
(\lambda x \cdot x)((1+2)+3)+4
$$

If we make all of the continuations explicit, we obtain the following:

$$
k_{0}=\lambda v \cdot(\lambda x \cdot x) v
$$

Example

Consider the following expression:

$$
(\lambda x \cdot x)((1+2)+3)+4
$$

If we make all of the continuations explicit, we obtain the following:

$$
\begin{aligned}
& k_{0}=\lambda v \cdot(\lambda x \cdot x) v \\
& k_{1}=\lambda a \cdot k_{0}(a+4)
\end{aligned}
$$

Example

Consider the following expression:

$$
(\lambda x \cdot x)((1+2)+3)+4
$$

If we make all of the continuations explicit, we obtain the following:

$$
\begin{aligned}
& k_{0}=\lambda v \cdot(\lambda x \cdot x) v \\
& k_{1}=\lambda a \cdot k_{0}(a+4) \\
& k_{2}=\lambda b \cdot k_{1}(b+3)
\end{aligned}
$$

Example

Consider the following expression:

$$
(\lambda x \cdot x)((1+2)+3)+4
$$

If we make all of the continuations explicit, we obtain the following:

$$
\begin{aligned}
& k_{0}=\lambda v \cdot(\lambda x \cdot x) v \\
& k_{1}=\lambda a \cdot k_{0}(a+4) \\
& k_{2}=\lambda b \cdot k_{1}(b+3) \\
& k_{3}=\lambda c \cdot k_{2}(c+2)
\end{aligned}
$$

Example

Consider the following expression:

$$
(\lambda x \cdot x)((1+2)+3)+4
$$

If we make all of the continuations explicit, we obtain the following:

$$
\begin{aligned}
& k_{0}=\lambda v \cdot(\lambda x \cdot x) v \\
& k_{1}=\lambda a \cdot k_{0}(a+4) \\
& k_{2}=\lambda b \cdot k_{1}(b+3) \\
& k_{3}=\lambda c \cdot k_{2}(c+2)
\end{aligned}
$$

The original expression is equivalent to $k_{3} 1$, which is just:

$$
(\lambda c \cdot(\lambda b \cdot(\lambda a \cdot(\lambda v \cdot(\lambda x \cdot x) v)(a+4))(b+3))(c+2)) 1
$$

Example (Continued)

Recall that let $x=e$ in e^{\prime} is syntactic sugar for $\left(\lambda x \cdot e^{\prime}\right) e$.
Hence, we can rewrite the expression with continuations more succinctly as

$$
\begin{aligned}
& \text { let } c=1 \text { in } \\
& \text { let } b=c+2 \text { in } \\
& \text { let } a=b+3 \text { in } \\
& \text { let } v=a+4 \text { in } \\
& (\lambda x . x) v
\end{aligned}
$$

CPS Transformation

We write $\mathcal{C P S} \llbracket e \rrbracket k=\ldots$ instead of $\mathcal{C P S} \llbracket e \rrbracket=\lambda k \ldots$
We assume that the new variables introduced are "fresh".

CPS Transformation

$$
\mathcal{C P S} \llbracket n \rrbracket k=k n
$$

We write $\mathcal{C P S} \llbracket e \rrbracket k=\ldots$ instead of $\mathcal{C P S} \llbracket e \rrbracket=\lambda k \ldots$
We assume that the new variables introduced are "fresh".

CPS Transformation

$$
\begin{aligned}
\mathcal{C P S} \llbracket n \rrbracket k & =k n \\
\mathcal{C P S} \llbracket e_{1}+e_{2} \rrbracket k & =\mathcal{C P S} \llbracket e_{1} \rrbracket\left(\lambda n \cdot \mathcal{C P S} \mathbb{S} e_{2} \rrbracket(\lambda m \cdot k(n+m))\right)
\end{aligned}
$$

We write $\mathcal{C P S} \llbracket e \rrbracket k=\ldots$ instead of $\mathcal{C P S} \llbracket e \rrbracket=\lambda k \ldots$
We assume that the new variables introduced are "fresh".

CPS Transformation

$$
\begin{aligned}
\mathcal{C P S} \llbracket n \rrbracket k & =k n \\
\mathcal{C P S} \llbracket e_{1}+e_{2} \rrbracket k & =\mathcal{C P S} \llbracket e_{1} \rrbracket\left(\lambda n \cdot \mathcal{C P S} \llbracket e_{2} \rrbracket(\lambda m \cdot k(n+m))\right) \\
\mathcal{C P S} \llbracket\left(e_{1}, e_{2}\right) \rrbracket k & =\mathcal{C P S} \llbracket e_{1} \rrbracket\left(\lambda v \cdot \mathcal{C P S} \llbracket e_{2} \rrbracket(\lambda w \cdot k(v, w))\right)
\end{aligned}
$$

We write $\mathcal{C P S} \llbracket e \rrbracket k=\ldots$ instead of $\mathcal{C P S} \mathbb{S} \llbracket \rrbracket=\lambda k \ldots$
We assume that the new variables introduced are "fresh".

CPS Transformation

$$
\begin{aligned}
\mathcal{C P} \mathcal{S} \llbracket n \rrbracket k & =k n \\
\mathcal{C P S} \llbracket e_{1}+e_{2} \rrbracket k & =\mathcal{C P S} \llbracket e_{1} \rrbracket\left(\lambda n \cdot \mathcal{C P S} \llbracket e_{2} \rrbracket(\lambda m \cdot k(n+m))\right) \\
\mathcal{C P S} \llbracket\left(e_{1}, e_{2}\right) \rrbracket k & =\mathcal{C P S} \llbracket e_{1} \rrbracket\left(\lambda v \cdot \mathcal{C P S} \llbracket e_{2} \rrbracket(\lambda w \cdot k(v, w))\right) \\
\mathcal{C P S} \llbracket \# 1 \rrbracket k & =\mathcal{C P} \mathcal{S} \llbracket e \rrbracket(\lambda v \cdot k(\# 1 v))
\end{aligned}
$$

We write $\mathcal{C P S} \llbracket e \rrbracket k=\ldots$ instead of $\mathcal{C P S} \mathbb{S} \llbracket \rrbracket=\lambda k \ldots$
We assume that the new variables introduced are "fresh".

CPS Transformation

$$
\begin{aligned}
\mathcal{C P S} \llbracket \llbracket \rrbracket k & =k n \\
\mathcal{C P S} \llbracket e_{1}+e_{2} \rrbracket k & =\mathcal{C P S} \llbracket e_{1} \rrbracket\left(\lambda n \cdot \mathcal{C P S} \llbracket e_{2} \rrbracket(\lambda m \cdot k(n+m))\right) \\
\mathcal{C P S} \llbracket\left(e_{1}, e_{2}\right) \rrbracket k & =\mathcal{C P S} \llbracket e_{1} \rrbracket\left(\lambda v \cdot \mathcal{C P S} \llbracket e_{2} \rrbracket(\lambda w \cdot k(v, w))\right) \\
\mathcal{C P S} \llbracket 1 e \rrbracket k & =\mathcal{C P} \mathbb{S} \llbracket \llbracket(\lambda v \cdot k(\# 1 v)) \\
\mathcal{C P S} \llbracket \# 2 \rrbracket \rrbracket k & =\mathcal{C P} \mathbb{P} \llbracket e \rrbracket(\lambda v \cdot k(\# 2 v))
\end{aligned}
$$

We write $\mathcal{C P S} \llbracket e \rrbracket k=\ldots$ instead of $\mathcal{C P S} \llbracket e \rrbracket=\lambda k \ldots$
We assume that the new variables introduced are "fresh".

CPS Transformation

$$
\begin{aligned}
& \mathcal{C P S} \llbracket \eta \rrbracket k=k n \\
& \mathcal{C P S} \llbracket e_{1}+e_{2} \rrbracket k=\mathcal{C P S} \llbracket e_{1} \rrbracket\left(\lambda n \cdot \mathcal{C P S} \llbracket e_{2} \rrbracket(\lambda m . k(n+m))\right) \\
& \mathcal{C P S} \llbracket\left(e_{1}, e_{2}\right) \rrbracket k=\mathcal{C P S} \llbracket e_{1} \rrbracket\left(\lambda v \cdot \mathcal{C P S} \llbracket e_{2} \rrbracket(\lambda w \cdot k(v, w))\right) \\
& \mathcal{C P S} \llbracket \# 1 ~ e \rrbracket k=\mathcal{C P S} \llbracket \llbracket \rrbracket(\lambda v . k(\# 1 v)) \\
& \mathcal{C P S} \llbracket \# 2 \rrbracket \rrbracket k=\mathcal{C P S} \llbracket \llbracket \rrbracket(\lambda v . k(\# 2 v)) \\
& \mathcal{C P S} \mathbb{S} \llbracket \rrbracket k=k x
\end{aligned}
$$

We write $\mathcal{C P S} \llbracket e \rrbracket k=\ldots$ instead of $\mathcal{C P S} \llbracket e \rrbracket=\lambda k \ldots$
We assume that the new variables introduced are "fresh".

$$
\begin{aligned}
& \mathcal{C P S} \llbracket n \rrbracket k=k n \\
& \mathcal{C P S} \llbracket e_{1}+e_{2} \rrbracket k=\mathcal{C P S} \llbracket e_{1} \rrbracket\left(\lambda n \cdot \mathcal{C P S} \llbracket e_{2} \rrbracket(\lambda m . k(n+m))\right) \\
& \mathcal{C P S} \llbracket\left(e_{1}, e_{2}\right) \rrbracket k=\mathcal{C P S} \llbracket e_{1} \rrbracket\left(\lambda v \cdot \mathcal{C P S} \llbracket e_{2} \rrbracket(\lambda w \cdot k(v, w))\right) \\
& \mathcal{C P S} \llbracket \# 1 ~ e \rrbracket k=\mathcal{C P S} \llbracket \llbracket \rrbracket(\lambda v . k(\# 1 v)) \\
& \mathcal{C P S} \llbracket \# 2 e \rrbracket k=\mathcal{C P S} \llbracket \llbracket \rrbracket(\lambda v . k(\# 2 v)) \\
& \mathcal{C P S} \mathbb{S} \llbracket \rrbracket k=k x \\
& \mathcal{C P S} \llbracket \lambda x . e \rrbracket k=k\left(\lambda x . \lambda k^{\prime} . \mathcal{C P} \mathcal{S} \llbracket e \rrbracket k^{\prime}\right)
\end{aligned}
$$

We write $\mathcal{C P S} \llbracket e \rrbracket k=\ldots$ instead of $\mathcal{C P S} \llbracket e \rrbracket=\lambda k \ldots$
We assume that the new variables introduced are "fresh".

$$
\begin{aligned}
\mathcal{C P} \mathcal{S} \llbracket n \rrbracket k & =k n \\
\mathcal{C P S} \llbracket e_{1}+e_{2} \rrbracket k & =\mathcal{C P S} \llbracket e_{1} \rrbracket\left(\lambda n \cdot \mathcal{C P S} \llbracket e_{2} \rrbracket(\lambda m \cdot k(n+m))\right) \\
\mathcal{C P S} \llbracket\left(e_{1}, e_{2}\right) \rrbracket k & =\mathcal{C P S} \llbracket e_{1} \rrbracket\left(\lambda v \cdot \mathcal{C P S} \llbracket e_{2} \rrbracket(\lambda w \cdot k(v, w))\right) \\
\mathcal{C P S} \llbracket \# 1 \rrbracket \rrbracket k & =\mathcal{C P} \mathbb{P} \llbracket e \rrbracket(\lambda v \cdot k(\# 1 v)) \\
\mathcal{C P S} \llbracket \# 2 \rrbracket k & =\mathcal{C P S} \llbracket e \rrbracket(\lambda v \cdot k(\# 2 v)) \\
\mathcal{C P S} \llbracket \rrbracket \rrbracket k & =k x \\
\mathcal{C P S} \llbracket \lambda x \cdot e \rrbracket k & =k\left(\lambda x \cdot \lambda k^{\prime} \cdot \mathcal{C P S} \llbracket e \rrbracket k^{\prime}\right) \\
\mathcal{C P S} \llbracket e_{1} e_{2} \rrbracket k & =\mathcal{C P S} \llbracket e_{1} \rrbracket\left(\lambda f \cdot \mathcal{C P S} \llbracket e_{2} \rrbracket(\lambda v \cdot f v k)\right)
\end{aligned}
$$

We write $\mathcal{C P S} \llbracket e \rrbracket k=\ldots$ instead of $\mathcal{C P S} \llbracket e \rrbracket=\lambda k \ldots$
We assume that the new variables introduced are "fresh".

