CS4110

Programming Languages & Logics

Lecture 18
Definitional Translation and Continuations

15 October 2014

Announcements

e Today: PS 5 out
e Friday: no Foster office hours

e Friday: guest lecture by Clarkson

Products and Let

Syntax

e =X

| Ax.e

| e e

| (e1,5)

[#1e

| #2e

|letx =e;ine
vi= e

| (v1,v2)

w

Products and Let

Evaluation Contexts

E==1]
|Ee
|vE
| (E;e)
[(1,6)
| #1E
| #2F

|letx =Eine;

Products and Let

Semantics

e— ¢
Ele] — E[€]

(Mx.e)v — e{v/x} P

#1 (V1,V2) — V #2 (V1,V2) — V)

letx =vine — e{v/x}

Products and Let

Translation

TIx] = x
T . e] = M. Tle]
Tle: eo] = Tle] Tle:]
Tl(er,e)] = (M Ay M. fxy) Tlel] Tlel
TI#1 e] = Tle] (M. Ay.x)
TI#2e] = Tlel (M. Ay.y)
Tlletx = e ine] = (M. Tlex]) Tlei

Laziness

Consider the call-by-name A-calculus...

Syntax
en=x
| er e
| Ax. e
vi=Mxe
Semantics

(Mx.e) e; — ei{er/x}

Laziness

Translation
T =x(-y)

Tl e] = M. Te]
Tler ea] = Tleil] (Az. TTea])

zis not a free variable of e,

References

Syntax

e.. =X
| Ax.e
| eo e

Vi=AXx.e

References

Syntax

e =X
| Ax.e
| eo €
| ref e

Vi=AXx.e

References

Syntax

e =X
| Ax.e
| eo €
| ref e
| le

Vi=AXx.e

References

Syntax

e =X
| Ax.e
| eo e
| ref e
| le
e :=e;

Vi=AXx.e

References

Syntax

e =X
| Ax.e
| eo e
| ref e
| le
e :=e;
| ¢

Vi=AXx.e

References

Syntax

e =X
| Ax.e
| eo e
| ref e
| le
e :=e;
| ¢

Vi=AXx.e
| ¢

References

Evaluation Contexts

E:==1]
|Ee
|vE

References

Evaluation Contexts

E:==1]
|Ee
|vE
| ref E

References

Evaluation Contexts

E:==1]
|Ee
|vE
| ref E
| 1E

References

Evaluation Contexts

E:==1]

References

Evaluation Contexts

E:==1]

References

Semantics

(o,e) — (o', ¢)
(o, Ele]) — (o', E[€])

>ﬁ

(o,(Mx.e)v) — (o,e{v/x}

¢ & dom(o) o(l) =v
(o,refv) — (o[l — V], {) (o, W) — (o, V)

References

Translation

.left as an exercise to the reader ;-)

Adequacy

How do we know if a translation is correct?

Adequacy

How do we know if a translation is correct?

Every target evaluation should represent a source evaluation...

Definition (Soundness)

Ve € Expy.. if T[e] —5, v/ then Jv.e =% vand V' equivalent to v

Adequacy

How do we know if a translation is correct?

Every target evaluation should represent a source evaluation...

Definition (Soundness)

Ve € Expy.. if T[e] —5, v/ then Jv.e =% vand V' equivalent to v

..and every source evaluation should have a target evaluation:

Definition (Completeness)

Ve € Expy,. if e =% vthen V. Te] —7, v/ and V' equivalent to v

Continuations

In the preceding translations, the control structure of the source
language was translated directly into the corresponding control
structure in the target language.

For example:

TM\x.€e] = M. Te]
TH:EH 62]] = T|[€1]] Tl[ez]]

What can go wrong with this approach?

Continuations

A snippet of code that represents “the rest of the program”

Can be used directly by programmers...

e _orin program transformations by a compiler

Make the control flow of the program explicit

Also useful for defining the meaning of features like exceptions

Example

Consider the following expression:

(M X)((1+2)+3)+4

Example

Consider the following expression:

(M X)((1+2)+3)+4

If we make all of the continuations explicit, we obtain the following:

ko = Av. (M. x) v

Example

Consider the following expression:

(M X)((1+2)+3)+4

If we make all of the continuations explicit, we obtain the following:

ko = Av. (M. x) v

Example

Consider the following expression:

(M X)((1+2)+3)+4

If we make all of the continuations explicit, we obtain the following:

ko = Av. (M. x) v
k] =)\a.ko (a +4)

Example

Consider the following expression:

(M X)((1+2)+3)+4

If we make all of the continuations explicit, we obtain the following:
ko = Av. (M. x) v
k] =)\a.ko (a +4)

Example

Consider the following expression:

(M X)((1+2)+3)+4

If we make all of the continuations explicit, we obtain the following:

ko = Av. (M. x) v

ki = Aa.ky (a+4)
ko = Ab.ky (b+ 3)
ks = Ac.ky (c+ 2)

Example

Consider the following expression:

(M X)((1+2)+3)+4

If we make all of the continuations explicit, we obtain the following:

ko = Av. (M. x) v

ki = Aa.ky (a+4)
ko = Ab.ky (b+ 3)
ks = Ac. ko (c+2)

The original expression is equivalent to ks 1, which is just:

(Ac. (Ab. (Aa. (. (A x) V) (@ +4)) (b+3)) (c+2)) 1

Example (Continued)

Recall that let x = ein € is syntactic sugar for (\x. €’) e.

Hence, we can rewrite the expression with continuations more
succinctly as

letc=1in

letb =c—+2in
leta=b+3in
letv=a+4in

(M. x) v

CPS Transformation

We write CPS[e] k = ... instead of CPS[e] = Ak. ...

We assume that the new variables introduced are “fresh”

CPS Transformation

CPS[n] k= kn

We write CPS[e] k = ... instead of CPS[e] = Ak. ...

We assume that the new variables introduced are “fresh”

CPS Transformation

CPS[n] k=kn
CPS[e, + e.] k = CPS[e] (An.CPS[e,] (Am. k (n + m)))

We write CPS[e] k = ... instead of CPS[e] = Ak. ...

We assume that the new variables introduced are “fresh”

CPS Transformation

CPS[n] k= kn
CPS[e, +] k = CPS[e] (An.CPS[es] (Am. k (n + m)))
CPS|(e1,e)] k= CPS[ei] (A\v.CPSJe:] (Aw. k (v, w)))

We write CPS[e] k = ... instead of CPS[e] = Ak. ...

We assume that the new variables introduced are “fresh”

CPS Transformation

CPS[n] k= kn
CPSJe + e;] k = CPS[ei] (An.CPS[e] (Am.k (n+m)))
CPS[(er,e)] k= CPS[er] (Av.CPS[ea] (Aw. k (v, w)))
CPS[#1 e] k = CPS[e] (Av.k (#1v))

We write CPS[e] k = ... instead of CPS[e] = Ak. ...

We assume that the new variables introduced are “fresh”

CPS Transformation

CPS[n] k= kn
CPSJe + e;] k = CPS[ei] (An.CPS[e] (Am.k (n+m)))
CPS[(er,e)] k= CPS[er] (Av.CPS[ea] (Aw. k (v, w)))
CPS[#1 e] k = CPS[e] (Av.k (#1v))
CPS[#2e] k = CPS[e] (Av. k (#2v))

We write CPS[e] k = ... instead of CPS[e] = Ak. ...

We assume that the new variables introduced are “fresh”

CPS Transformation

CPS[n] k= kn
CPSJe + e;] k = CPS[ei] (An.CPS[e] (Am.k (n+m)))
CPS[(er,e)] k= CPS[er] (Av.CPS[ea] (Aw. k (v, w)))
CPS[#1 e] k = CPS[e] (Av.k (#1v))
CPS[#2e] k = CPS[e] (Av. k (#2v))
CPS[x] k = kx

We write CPS[e] k = ... instead of CPS[e] = Ak. ...

We assume that the new variables introduced are “fresh”

CPS Transformation

CPS[n] k= kn
CPSJe + e;] k = CPS[ei] (An.CPS[e] (Am.k (n+m)))
CPS[(er,e)] k= CPS[er] (Av.CPS[ea] (Aw. k (v, w)))
CPS[#1 e] k = CPS[e] (Av.k (#1v))
CPS[#2e] k = CPS[e] (Av. k (#2v))
CPS[x] k = kx
CPS[Mx.e] k =k (M. AK.CPS[e] K)

We write CPS[e] k = ... instead of CPS[e] = Ak. ...

We assume that the new variables introduced are “fresh”

CPS Transformation

CPS[n] k=kn
CPSJe + e;] k = CPS[ei] (An.CPS[e] (Am.k (n+m)))
CPS[(er,e)] k= CPS[er] (Av.CPS[ea] (Aw. k (v, w)))
CPS[#1 €] k = CPS[e] (Av. k (#1v))
CPS[#2e] k = CPS[e] (Av. k (#2v))
CPS[x] k= kx
CPS[Mx.e] k =k (M. AK.CPS[e] K)
CPSJe ex] k = CPS[ei] (M.CPS[ea] (Av. fvk))

We write CPS[e] k = ... instead of CPS[e] = Ak. ...

We assume that the new variables introduced are “fresh”

