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Announcements

• Foster Office Hours 11-12

• Enjoy fall break!
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Review: Church Booleans

We can encode TRUE, FALSE, and IF, as follows:

TRUE ≜ λx. λy. x

FALSE ≜ λx. λy. y

IF ≜ λb. λt. λf. b t f

It is easy to see that
IF TRUE v v′ ⇓ v

and
IF FALSE v v′ ⇓ v′
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Church Numerals

Church numerals encode a number n as a function that takes f and
x, and applies f to x n times.

0 ≜ λf. λx. x
1 ≜ λf. λx. f x
2 ≜ λf. λx. f (f x)

We can define other functions on integers:

SUCC ≜ λn. λf. λx. f (n f x)

PLUS ≜ λn1. λn2. n1 SUCC n2

TIMES ≜ λn1. λn2. n1 PLUS n2 ZERO
ISZERO ≜ λn. n (λz. false) true
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Recursive Functions

How would we write recursive functions like factorial?

We’d like to write it like this...

FACT ≜ λn. IF (ISZERO n) 1 (TIMES n (FACT (PRED n)))

In slightly more readable notation this is...

FACT ≜ λn. if n = 0 then 1 else n× FACT (n− 1)

...but this is an equation, not a definition!
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Recursion removal trick

We can perform a “trick” to define a function FACT that satisfies the
recursive equation on the preveous slide.

Define a new function FACT′:

FACT′ ≜ λf. λn. if n = 0 then 1 else n× (f f (n− 1))

Then define FACT as FACT′ applied to itself:

FACT ≜ FACT′ FACT′
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Example

Let’s try evaluating FACT on 3...

FACT 3 = (FACT′ FACT′) 3
= ((λf. λn. if n = 0 then 1 else n× (f f (n− 1))) FACT′) 3
→ (λn. if n = 0 then 1 else n× (FACT′ FACT′ (n− 1))) 3
→ if 3 = 0 then 1 else 3 × (FACT′ FACT′ (3 − 1))
→ 3 × (FACT′ FACT′ (3 − 1))
→ . . .

→ 3 × 2 × 1 × 1
→∗ 6

So we have a technique for writing recursive functions: write a
function f′ that takes itself as an argument and define f as f′ f′.
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Fixpoint combinators

There is another way of writing recursive functions... we can
express the recursive function as the fixed point of some other,
higher-order function, and then take its fixed point.

Consider factorial again. It is a fixed point of the following:

G ≜ λf. λn. if n = 0 then 1 else n× (f (n− 1))

Recall that if g if a fixed point of G, then we have G g = g.

There are a number of “fixed point combinators,” such as the Y
combinator. Thus, we can define the factorial function FACT to be
simply Y G, the fixed point of G.
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Y Combinator

The (infamous) Y combinator is defined as

Y ≜ λf. (λx. f (x x)) (λx. f (x x)).

It was discovered by Haskell Curry, and is one of the simplest
fixed-point combinators.

Note how similar its defnition is to omega:

omega ≜ (λx. x x) (λx. x x)
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Z Combinator

What happens when we evaluate Y G under CBV?

To avoid this issue, we’ll use a slight variant of the Y combinator, Z,
which is easier to use under CBV.

Z ≜ λf. (λx. f (λy. x x y)) (λx. f (λy. x x y))
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Example

Let’s see Z in action, on our function G

FACT
= Z G
= (λf. (λx. f (λy. x x y)) (λx. f (λy. x x y))) G Definition of Z
→ (λx.G (λy. x x y)) (λx.G (λy. x x y))
→ G (λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y)
= (λf. λn. if n = 0 then 1 else n× (f (n− 1)))

(λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y)
→ λn. if n = 0 then 1

else n× ((λy. (λx.G (λy. x x y)) (λx.G (λy. x x y)) y) (n− 1))
=β λn. if n = 0 then 1 else n× (λy. (Z G) y) (n− 1)
=β λn. if n = 0 then 1 else n× (Z G (n− 1))
= λn. if n = 0 then 1 else n× (FACT (n− 1))
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Other fixpoint combinators

There are many (indeed infinitely many) fixed-point combinators.
Here’s a cute one:

Yk ≜ (L L L L L L L L L L L L L L L L L L L L L L L L L L)

where

L ≜ λabcdefghijklmnopqstuvwxyzr.
(r (t h i s i s a f i x e d p o i n t c o m b i n a t o r))

12



Turing’s Fixpoint Combinator

To gain some more intuition for fixpoint combinators, let’s derive a
combinatorΘ originally discovered by Turing.

Suppose we have a higher order function f, and want the fixed
point of f.

We know thatΘ f is a fixed point of f, so we have

Θ f = f (Θ f).

This means, that we can write the following recursive equation:

Θ = λf. f (Θ f).

Now use the recursion removal trick:
Θ′ ≜ λt. λf. f (t t f)
Θ ≜ Θ′ Θ′
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Example

FACT = Θ G

= ((λt. λf. f (t t f)) (λt. λf. f (t t f))) G
→ (λf. f ((λt. λf. f (t t f)) (λt. λf. f (t t f)) f)) G
→ G ((λt. λf. f (t t f)) (λt. λf. f (t t f)) G)
= G (Θ G)
= (λf. λn. if n = 0 then 1 else n× (f (n− 1))) (Θ G)
→ λn. if n = 0 then 1 else n× ((Θ G) (n− 1))
= λn. if n = 0 then 1 else n× (FACT (n− 1))

14



Example

FACT = Θ G
= ((λt. λf. f (t t f)) (λt. λf. f (t t f))) G

→ (λf. f ((λt. λf. f (t t f)) (λt. λf. f (t t f)) f)) G
→ G ((λt. λf. f (t t f)) (λt. λf. f (t t f)) G)
= G (Θ G)
= (λf. λn. if n = 0 then 1 else n× (f (n− 1))) (Θ G)
→ λn. if n = 0 then 1 else n× ((Θ G) (n− 1))
= λn. if n = 0 then 1 else n× (FACT (n− 1))

14



Example

FACT = Θ G
= ((λt. λf. f (t t f)) (λt. λf. f (t t f))) G
→ (λf. f ((λt. λf. f (t t f)) (λt. λf. f (t t f)) f)) G

→ G ((λt. λf. f (t t f)) (λt. λf. f (t t f)) G)
= G (Θ G)
= (λf. λn. if n = 0 then 1 else n× (f (n− 1))) (Θ G)
→ λn. if n = 0 then 1 else n× ((Θ G) (n− 1))
= λn. if n = 0 then 1 else n× (FACT (n− 1))

14



Example

FACT = Θ G
= ((λt. λf. f (t t f)) (λt. λf. f (t t f))) G
→ (λf. f ((λt. λf. f (t t f)) (λt. λf. f (t t f)) f)) G
→ G ((λt. λf. f (t t f)) (λt. λf. f (t t f)) G)

= G (Θ G)
= (λf. λn. if n = 0 then 1 else n× (f (n− 1))) (Θ G)
→ λn. if n = 0 then 1 else n× ((Θ G) (n− 1))
= λn. if n = 0 then 1 else n× (FACT (n− 1))

14



Example

FACT = Θ G
= ((λt. λf. f (t t f)) (λt. λf. f (t t f))) G
→ (λf. f ((λt. λf. f (t t f)) (λt. λf. f (t t f)) f)) G
→ G ((λt. λf. f (t t f)) (λt. λf. f (t t f)) G)
= G (Θ G)

= (λf. λn. if n = 0 then 1 else n× (f (n− 1))) (Θ G)
→ λn. if n = 0 then 1 else n× ((Θ G) (n− 1))
= λn. if n = 0 then 1 else n× (FACT (n− 1))

14



Example

FACT = Θ G
= ((λt. λf. f (t t f)) (λt. λf. f (t t f))) G
→ (λf. f ((λt. λf. f (t t f)) (λt. λf. f (t t f)) f)) G
→ G ((λt. λf. f (t t f)) (λt. λf. f (t t f)) G)
= G (Θ G)
= (λf. λn. if n = 0 then 1 else n× (f (n− 1))) (Θ G)

→ λn. if n = 0 then 1 else n× ((Θ G) (n− 1))
= λn. if n = 0 then 1 else n× (FACT (n− 1))

14



Example

FACT = Θ G
= ((λt. λf. f (t t f)) (λt. λf. f (t t f))) G
→ (λf. f ((λt. λf. f (t t f)) (λt. λf. f (t t f)) f)) G
→ G ((λt. λf. f (t t f)) (λt. λf. f (t t f)) G)
= G (Θ G)
= (λf. λn. if n = 0 then 1 else n× (f (n− 1))) (Θ G)
→ λn. if n = 0 then 1 else n× ((Θ G) (n− 1))

= λn. if n = 0 then 1 else n× (FACT (n− 1))

14



Example

FACT = Θ G
= ((λt. λf. f (t t f)) (λt. λf. f (t t f))) G
→ (λf. f ((λt. λf. f (t t f)) (λt. λf. f (t t f)) f)) G
→ G ((λt. λf. f (t t f)) (λt. λf. f (t t f)) G)
= G (Θ G)
= (λf. λn. if n = 0 then 1 else n× (f (n− 1))) (Θ G)
→ λn. if n = 0 then 1 else n× ((Θ G) (n− 1))
= λn. if n = 0 then 1 else n× (FACT (n− 1))

14



Definitional Translation

We have seen how to encode a number of high-level language
constructs—booleans, conditionals, natural numbers, and
recursion—in λ-calculus.

In definitional translation, where we define the meaning of
language constructs by translation to another language.

This is a form of denotational semantics, but instead of the target
being mathematical objects, it is a simpler programming language
(such as λ-calculus).

For each language construct, we define an operational semantics
directly, and then give an alternate semantics by translation to a
simpler language.
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Review: Call-by-Value

Recall the syntax and CBV semantics of λ-calculus:

e ::= x | λx. e | e1 e2
v ::= λx. e

e1 → e′1
e1 e2 → e′1 e2

e → e′

v e → v e′

(λx. e) v → e{v/x}
β

Note that there are two kinds of rules: congruence rules that specify
evaluation order and computation rules that specify the
“interesting” reductions.

16



Evaluation Contexts

Evaluation contexts are a simple mechanism that separates out
these two kinds of rules.

An evaluation context E (sometimes written E[·]) is an expression
with a “hole” in it, that is with a single occurrence of the special
symbol [·] (called the “hole”) in place of a subexpression.

Evaluation contexts are defined using a BNF grammar that is similar
to the grammar used to define the language.

E ::= [·] | E e | v E

We write E[e] to mean the evaluation context E where the hole has
been replaced with the expression e.
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Examples

E1 = [·] (λx. x)
E1[λy. y y] = (λy. y y) λx. x

E2 = (λz. z z) [·]
E2[λx. λy. x] = (λz. z z) (λx. λy. x)

E3 = ([·] λx. x x) ((λy. y) (λy. y))
E3[λf. λg. f g] = ((λf. λg. f g) λx. x x) ((λy. y) (λy. y))
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CBV With Evaluation Contexts

With evaluation contexts, we can define the evaluation semantics
for the pure CBV λ-calculus with just two rules, one for evaluation
contexts, and one for β-reduction.

First we define the contexts:

E ::= [·] | E e | v E
Then we define the small-step rules:

e → e′

E[e] → E[e′]

(λx. e) v → e{v/x}
β
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CBN With Evaluation Contexts

We can also define the semantics of CBN λ-calculus with
evaluation contexts.

First we define the contexts:

E ::= [·] | E e

Then we define the small-step rules:

e → e′

E[e] → E[e′]

(λx. e) e′ → e{e′/x}
β
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Multiple Arguments

Our syntax for functions only allows function with a single
argument: λx. e.

We can define a language that allows functions to have multiple
arguments.

e ::= x | λx1, . . . , xn. e | e0 e1 . . . en

Here, a function λx1, . . . , xn. e takes n arguments, with names x1
through xn. In a multi argument application e0 e1 . . . en, we expect
e0 to evaluate to an n-argument function, and e1, . . . , en are the
arguments that we will give the function.
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Multiple Arguments

We can define a CBV operational semantics for the multi-argument
λ-calculus as follows.

E ::= [·] | v0 . . . vi−1 E ei+1 . . . en

e → e′

E[e] → E[e′]

(λx1, . . . , xn. e0) v1 . . . vn → e0{v1/x1}{v2/x2} . . . {vn/xn}
β

Note that the evaluation contexts ensure that we evaluate
multi-argument applications e0 e1 . . . en from left to right.
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Definitional Translation

The multi-argument λ-calculus isn’t any more expressive that the
pure λ-calculus.

We can define a translation T [[·]] that takes an expression in the
multi-argument λ-calculus and returns an equivalent expression in
the pure λ-calculus.

T [[x]] = x
T [[λx1, . . . , xn. e]] = λx1. . . . λxn. T [[e]]
T [[e0 e1 e2 . . . en]] = (. . . ((T [[e0]] T [[e1]]) T [[e2]]) . . . T [[en]])
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Currying

This process of rewriting a function that takes multiple arguments
as a chain of functions that each take a single argument is called
currying.

Consider a mathematical function that takes two arguments, the
first from domain A and the second from domain B, and returns a
result from domain C.

We can describe this function, using mathematical notation for
function domains, as an element of A× B → C.

Currying this function produces an element of A → (B → C).

That is, the curried version takes an argument from domain A, and
returns a function that takes an argument from domain B and
produces a result of domain C.
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