CS4110

Programming Languages & Logics

Lecture 15
De Bruijn, Combinators, Encodings

3 October 2014

Announcements

e Foster office hours 11am-12pm

e Next Monday: Preliminary Exam |

Review: \-calculus

Syntax
e = xl|ee|Me
v = MX.e
Semantics
/ /
e — € e—e
er e, — €l e ve s ve

(M.e)v — e{v/x} A

w

de Bruijn Notation

Another way to avoid the tricky issues with substitution is to use a
nameless representation of terms.

ex=n|lelee

Examples

Here are some terms written in standard and de Bruijn notation:

| Standard | de Bruijn |
AX.X | A0

Examples

Here are some terms written in standard and de Bruijn notation:

| Standard | de Bruijn |

AX.X 2.0
A\2.Z 2.0

Examples

Here are some terms written in standard and de Bruijn notation:

| Standard | de Bruijn |
AX.X A0
\2.7 A0

AX.AY.X AT

Examples

Here are some terms written in standard and de Bruijn notation:

| Standard | de Bruijn |
AX.X A0
A\z.Z A0
AX.AY.X AT

MAYASAZXS(YSZ) | AAAAN3T(210)

Examples

Here are some terms written in standard and de Bruijn notation:

| Standard | de Bruijn |
AX.X A0
A\z.Z A0
AXAY X AT

MAYASAZXS(YSZ) | AAAAN3T(210)
(Axx x) (Axxx) (A.00) (A.00)

Examples

Here are some terms written in standard and de Bruijn notation:

| Standard | de Bruijn |
AX.X A0
A\z.Z A0
AXAY X AT
MAYASAZXS(YSZ) | AAAAN3T(210)
(Axx x) (Axxx) (A.00) (A.00)
(M Axx) (A\y.y) (AX.0) (X.0)

Free variables

To represent a A\-expression that contains free variables in de Bruijn
notation, we need a way to map the free variables to integers.

We will work with respect to a map I from variables to integers
called a context.

Examples:
Suppose that I mapsxtoOand yto 1.

e Representation of x yis 0 1
® Representationof Az.xyz\. 120

Shifting

To define substitution, we will need an operation that shifts the
variables above a cutoff:

n ifn<c

. n_+/’ otherwise
Te(Ae) = A(Te)
T(ere) = (e e) (Tt e)

Te(n) =

The cutoff keeps track of the variables that were bound in the
original expression and so should not be shifted as the shifting
operator walks down the structure of an expression and is O initially.

Substitution

Now we can define substitution as follows:

n{e/m} - {i gt,;we:rv:/?se
(efe/m} = Ne{(1e)/m+1}))
(er ex){e/m} = (ei{e/m}) (erfe/m))

Substitution

Now we can define substitution as follows:

Mo/} = 1) Geraie
(efe/m} = Ne{(1e)/m+1}))
(er ex){e/m} = (ei{e/m}) (erfe/m))

The § rule for terms in de Bruijn notation is just:

e = 1o (@it /o))

Example

Consider the term (Au.Av.u x) y with respect to a context where
F(x)=0andT(y) =1.

Example

Consider the term (Au.Av.u x) y with respect to a context where
F(x)=0andT(y) =1.

(AN12) 1

Example

Consider the term (Au.Av.u x) y with respect to a context where
F(x)=0andT(y) =1.

(AN12) 1
= 15 (A 12){(151)/0})

Example

Consider the term (Au.Av.u x) y with respect to a context where
F(x)=0andT(y) =1.

(AAT2)1
= 1o (M12){(T 1)/0})
= 15" (A12){2/0})

Example

Consider the term (Au.Av.u x) y with respect to a context where
F(x)=0andT(y) =1.

(AA12) 1
— To‘ (A12){(15 1)/0})

= 15 ((M2){2/0})

= 15 A 2{(152)/(0+1)})

Example

Consider the term (Au.Av.u x) y with respect to a context where
F(x)=0andT(y) =1.

12){(1o 1)/0})
2){2/0})
2{(152)/(0+1)})
2){3/1})

Example

Consider the term (Au.Av.u x) y with respect to a context where
F(x)=0andl(y)=1.

(AA12)1
o (A1 2){(1e 1)/0})
1((N){2/0}
o A 2){(12)/(0+1)})
5 A((12)(3/1}
AR NUETINEIENE

vvvv

4

Example

Consider the term (Au.Av.u x) y with respect to a context where
F(x)=0andl(y)=1.

()\)\12)1

o ((A12){(1o 1)/0})

o (A12){2/0})
(12){(152)/(0+1)})
A((12)(3/1})

To; N
* A(1{3/1}) (2{3/1})
")\32

4

To/\

Example

Consider the term (Au.Av.u x) y with respect to a context where
F(x)=0andl(y)=1.

S (A 2){(1)

)/0})
((12){2/03)
(1 2){(1o))

A /(0+1)})
A((12){3/1)
g2{3/ 1 (2{3/1})

[T T TR

Example

Consider the term (Au.Av.u x) y with respect to a context where
F(x)=0andl(y)=1.

S (A1 2){(15 1)/0))

((12){2/03)
A((12){(1 2)/(0+ 1)})
(12){3/1)

A
A(1{3/13) (2{3/1})
32

[T T TR

W
T
W
W
W
o
2

which, in standard notation (with respect to I'), is the same as
AVY X

Combinators

Another way to avoid the issues having to do with free and bound
variable names in the A-calculus is to work with closed expressions
or combinators.

It turns out that with just a few combinators—in particular S and
K—as well as application, we can encode the entire A-calculus.

Combinators

Another way to avoid the issues having to do with free and bound
variable names in the A-calculus is to work with closed expressions
or combinators.

It turns out that with just a few combinators—in particular S and
K—as well as application, we can encode the entire A-calculus.

K= Ay, x

S =M.z x7 (v 2)
| = Ax. x

Kxy — x

Sxyz—xz(y2)
I x — x

Bracket Abstraction

The function [x] that takes a combinator term M and builds another
term that behaves like Ax.M:

X]x = |
XIN = KN where x & fv(N)
IN Ny = S (XN (X V:)

It is not hard to show that ([x] M) N — M{N/x} for every term N.

Bracket Abstraction

We then define a function (e)* that maps a A-calculus expression
to a combinator term:

()x = x
(e1e)x = (e1)* (er)x
(M.e)x = [x](e)*

Z

Example

As an example, the expression Ax.\y. x is translated as follows:

(MY X)*

[X] (Ay. x)=

[(V])

[x] (Kx)

(S (K K) (] %))
S (KK) I

Example

We can check that this behaves the same as our original
A-expression by seeing how it evaluates when applied to arbitrary
expressions ey and e,.

(M. x) e e
= (W.e)e
= e]

Example

We can check that this behaves the same as our original
A-expression by seeing how it evaluates when applied to arbitrary

expressions e; and e;.

(M. x) ey e
= (W.e)e
= e]

and
(S (K K) |) e 6

= (KKey)(le))e;
Ke; e,
— e]

Encodings

The pure A-calculus contains only functions as values. It is not
exactly easy to write large or interesting programs in the pure
A-calculus. We can however encode objects, such as booleans, and
integers.

Booleans

We need to define functions TRUE, FALSE, AND, NOT, IF, and other
operators that behave as follows:

AND TRUE FALSE = FALSE
NOT FALSE = TRUE

IF TRUE e; e, = ¢4

IF FALSE e, 65, = €5

Booleans

We need to define functions TRUE, FALSE, AND, NOT, IF, and other
operators that behave as follows:

AND TRUE FALSE = FALSE
NOT FALSE = TRUE

IF TRUE e; e, = ¢4

IF FALSE e, 65, = €5

Let’s start by defining TRUE and FALSE:

TRUE £ A\x. \y. x
FALSE £ \x. \y.y

Booleans

We want the function IF to behave like

Ab. At M if b = TRUE then telse f.

Booleans

We want the function IF to behave like
Ab. At. M. if b =TRUE then telse f.
The definitions for TRUE and FALSE make this very easy.

FE2 N0 AL M.DES

Church Numerals

Church numerals encode a number n as a function that takes fand
x, and applies f to x n times.

0 2 MM.x
T 2 MM fx
2 = M MF(Fx)

Church Numerals

Church numerals encode a number n as a function that takes fand
x, and applies fto x n times.

0 2 MM.x
T 2 MM fx
2 = M MF(Fx)

We can also define the successor function:

SUCC £ An. M Ax.f(nfx)

Addition

Text

Given the definition of SUCC, we can easily define addition.
Intuitively, the natural number n; + n; is the result of apply the
successor function ny times to n..

PLUS £ A\n;. An,. n; SUCC n,

Nate Foster
Text

