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Announcements

PS #4 due Wednesday

Foster office hours 4-5pm

Wednesday: CS 50 and Gates Dedication! No lecture

Next Monday: Preliminary Exam |



Review: \-calculus

Syntax
e = xl|ee|Me
v = M. e
Semantics
/ /
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(M.e)v — e{v/x} A
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Example: Twice

Consider the function defined by double x = x + x.
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Example: Twice

Consider the function defined by double x = x + x.

Now suppose we want to apply double multiple times:

quadruple x = double (double x)
octuplex = quadruple (quadruple x)
hexadecatuple x = octuple (octuple x)

We can abstract this pattern using a generic function:
twice = M. \x. f (fx)

Now the functions above can be written as

quadruple x = twice double
octuplex = twice quadruple
hexadecatuple x = twice octuple

(or twice (\x. twice x))



Evaluation

The essence of A-calculus evaluation is the -reduction rule, which
says how to apply a function to an argument.

(M.e)v — e{v/x} f-reduction

But there are many different evaluation strategies, each
corresponding to particular ways of using 8 within terms:
Full 3 reduction

Call-by-value

Call-by-name

Normal order
° etC.



Call by value

e; — € e, — €

e e; — € e Vi e, — v, €

(M. er) va = er{va/x} b

Key characteristics:

e Arguments evaluated fully before they are supplied to functions
e Fvaluation goes from left to right (in this presentation)
e \We don't evaluate “undera \”



Call by name

e; — €
e e; — € e

(Mx.e) e; — er{e/x} P

Key characteristics:

e Arguments supplied immediately to functions

e Evaluation still goes from left to right (in this presentation)
e \We still don't evaluate “under a \”



Question

Fully evaluating any A-calculus term under call by value and call by
name will produce the same result?

A. True
B. False



Full 8 reduction

e — € e, — €
er e, — €l e ere; — e é

e— ¢
M. e = M. €

(Mx.e1) ex — ei{er/x}

Key characteristics:
e Use the § rule anywhere...
e _including “undera \”



Question

Which of the following strategies terminate?

A. Call by value

B. Call by name
C. Full 8 reduction
D. All of them

E. None of them



Question

Which of the following strategies are non-deterministic?

A. Call by value

B. Call by name
C. Full 8 reduction
D. All of them

E. None of them



Question

Does the non-determinism in full 5 reduction affect the final result?

A. Yes
B. No



Confluence

Full B reduction has the following property:

e
VEERN
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Confluence

Full B reduction has the following property:

e
VEERN
e e
NS

e

Theorem (Confluence)

Ife —*e, ande — *e, thene; — *e’ and e, — *¢’ forsomee’.



Substitution

The main workhorse in the g rule is substitution, which replaces
free occurrences of a variable x with a term e

However, defining substitution correctly is actually quite subtle



Substitution |

As a first attempt, consider the following:
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Substitution |

As a first attempt, consider the following:

yle/x}
(e1 ex){e/x}
(Av.er){e/x}

e ify=x
y otherwise

(er{e/x}) (e2{e/x})
Av.ei{e/x}
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Substitution |

As a first attempt, consider the following:

ify =x
re/xt = ; ot)%ervvise
(erex){e/x}t = (er{e/x}) (e2{e/x})

(\v.e){e/x} = My.e{e/x}
What's wrong with this definition?

It substitutes bound variables tool!

(A {3/v} = (W.3)



Substitution |l

Okay... since we are working up to a-equivalence, let's replace the
variables used in abstractions so they are different than the variable

being substituted.
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ify =x
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Substitution |l

Okay... since we are working up to a-equivalence, let's replace the
variables used in abstractions so they are different than the variable
being substituted.

e ify=x
yie/x} y ot);erwise
(erex){e/x} = (er{e/x}) (e2{e/x})
(\v.e){e/x} = MIy.efe/x} where y # x
What's wrong with this definition?

It leads to variable capture!

) /xg = ()



Substitution Il

The correct definition is capture-avoiding substitution:

B e ify#x
e/t = y otherwise

(erex)fe/xy = (e{e/x}) (e{e/x})
(\v.e){e/x} = My.(ef{e/x}) where y # xand y ¢ fv(e)



