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Announcements

• PS #4 due Wednesday

• Foster office hours 4-5pm

• Wednesday: CS 50 and Gates Dedication! No lecture

• Next Monday: Preliminary Exam I
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Review: λ-calculus

Syntax
e ::= x | e1 e2 | λx. e
v ::= λx. e

Semantics

e1 → e′1
e1 e2 → e′1 e2

e → e′

v e → v e′

(λx. e) v → e{v/x}
β
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Example: Twice

Consider the function defined by double x = x+ x.

Now suppose we want to apply doublemultiple times:

quadruple x = double (double x)
octuple x = quadruple (quadruple x)

hexadecatuple x = octuple (octuple x)

We can abstract this pattern using a generic function:

twice ≜ λf. λx. f (f x)

Now the functions above can be written as
quadruple x = twice double

octuple x = twice quadruple
hexadecatuple x = twice octuple

(or twice (λx. twice x))
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Evaluation

The essence of λ-calculus evaluation is the β-reduction rule, which
says how to apply a function to an argument.

(λx. e) v → e{v/x}
β-reduction

But there are many different evaluation strategies, each
corresponding to particular ways of using β within terms:
• Full β reduction
• Call-by-value
• Call-by-name
• Normal order
• etc.
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Call by value

e1 → e′1
e1 e2 → e′1 e2

e2 → e′2
v1 e2 → v1 e′2

(λx. e1) v2 → e1{v2/x}
β

Key characteristics:
• Arguments evaluated fully before they are supplied to functions
• Evaluation goes from left to right (in this presentation)
• We don’t evaluate “under a λ”
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Call by name

e1 → e′1
e1 e2 → e′1 e2

(λx. e1) e2 → e1{e2/x}
β

Key characteristics:
• Arguments supplied immediately to functions
• Evaluation still goes from left to right (in this presentation)
• We still don’t evaluate “under a λ”
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Question

Fully evaluating any λ-calculus term under call by value and call by
name will produce the same result?

A. True
B. False
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Full β reduction

e1 → e′1
e1 e2 → e′1 e2

e2 → e′2
e1 e2 → e1 e′2

e → e′

λx. e → λx. e′

(λx. e1) e2 → e1{e2/x}
β

Key characteristics:
• Use the β rule anywhere...
• ...including “under a λ”
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Question

Which of the following strategies terminate?

A. Call by value
B. Call by name
C. Full β reduction
D. All of them
E. None of them
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Question

Which of the following strategies are non-deterministic?

A. Call by value
B. Call by name
C. Full β reduction
D. All of them
E. None of them
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Question

Does the non-determinism in full β reduction affect the final result?

A. Yes
B. No

12



Confluence

Full β reduction has the following property:

e

e1 e2

e′

Theorem (Confluence)
If e →∗e1 and e →∗e2 then e1 →∗e′ and e2 →∗e′ for some e′.

13



Confluence

Full β reduction has the following property:

e

e1 e2

e′

Theorem (Confluence)
If e →∗e1 and e →∗e2 then e1 →∗e′ and e2 →∗e′ for some e′.

13



Substitution

The main workhorse in the β rule is substitution, which replaces
free occurrences of a variable x with a term e

However, defining substitution correctly is actually quite subtle
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Substitution I

As a first attempt, consider the following:

y{e/x} =

{
e if y = x
y otherwise

(e1 e2){e/x} = (e1{e/x}) (e2{e/x})

(λy.e1){e/x} = λy.e1{e/x}

What’s wrong with this definition?

It substitutes bound variables too!

(λy.y){3/y}

= (λy.3)
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Substitution II

Okay... since we are working up to α-equivalence, let’s replace the
variables used in abstractions so they are different than the variable
being substituted.

y{e/x} =

{
e if y = x
y otherwise

(e1 e2){e/x} = (e1{e/x}) (e2{e/x})

(λy.e1){e/x} = λy.e1{e/x} where y ̸= x

What’s wrong with this definition?

It leads to variable capture!

(λy.x){y/x}

= (λy.y)
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Substitution III

The correct definition is capture-avoiding substitution:

y{e/x} =

{
e if y ̸= x
y otherwise

(e1 e2){e/x} = (e1{e/x}) (e2{e/x})

(λy.e1){e/x} = λy.(e1{e/x}) where y ̸= x and y ̸∈ fv(e)
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