CS 4110

Programming Languages \& Logics

Lecture 14
 More λ-calculus

29 September 2014

Announcements

- PS \#4 due Wednesday
- Foster office hours 4-5pm
- Wednesday: CS 50 and Gates Dedication! No lecture
- Next Monday: Preliminary Exam I

Review: λ-calculus

Syntax

$$
\begin{aligned}
& e::=x\left|e_{1} e_{2}\right| \lambda x \cdot e \\
& v::=\lambda x \cdot e
\end{aligned}
$$

Semantics

$$
\begin{gathered}
\frac{e_{1} \rightarrow e_{1}^{\prime}}{e_{1} e_{2} \rightarrow e_{1}^{\prime} e_{2}} \quad \frac{e \rightarrow e^{\prime}}{v e \rightarrow v e^{\prime}} \\
\overline{(\lambda x \cdot e) v \rightarrow e\{v / x\}} \beta
\end{gathered}
$$

Example: Twice

Consider the function defined by double $x=x+x$.

Example: Twice

Consider the function defined by double $x=x+x$.
Now suppose we want to apply double multiple times:

Example: Twice

Consider the function defined by double $x=x+x$.
Now suppose we want to apply double multiple times:

$$
\text { quadruple } x=\text { double (double } x \text {) }
$$

Example: Twice

Consider the function defined by double $x=x+x$.
Now suppose we want to apply double multiple times:

$$
\begin{aligned}
\text { quadruple } x & =\text { double (double } x \text {) } \\
\text { octuple } x & =\text { quadruple (quadruple } x \text {) }
\end{aligned}
$$

Example: Twice

Consider the function defined by double $x=x+x$.
Now suppose we want to apply double multiple times:

$$
\begin{aligned}
\text { quadruplex } & =\text { double (double x) } \\
\text { octuplex } & =\text { quadruple (quadruple } x \text {) } \\
\text { hexadecatuplex } & =\text { octuple (octuple } x \text {) }
\end{aligned}
$$

Example: Twice

Consider the function defined by double $x=x+x$.
Now suppose we want to apply double multiple times:

$$
\begin{aligned}
\text { quadruple } x & =\text { double (double } x \text {) } \\
\text { octuplex } & =\text { quadruple (quadruple } x) \\
\text { hexadecatuple } x & =\text { octuple (octuple } x \text {) }
\end{aligned}
$$

We can abstract this pattern using a generic function:

$$
\text { twice } \triangleq \lambda f . \lambda x . f(f x)
$$

Example: Twice

Consider the function defined by double $x=x+x$.
Now suppose we want to apply double multiple times:

$$
\begin{aligned}
\text { quadruplex } & =\text { double (double x) } \\
\text { octuplex } & =\text { quadruple (quadruple } x \text {) } \\
\text { hexadecatuple } x & =\text { octuple (octuple } x \text {) }
\end{aligned}
$$

We can abstract this pattern using a generic function:

$$
\text { twice } \triangleq \lambda f . \lambda x . f(f x)
$$

Now the functions above can be written as

$$
\begin{aligned}
\text { quadruplex }= & \text { twice double } \\
\text { octuplex }= & \text { twice quadruple } \\
\text { hexadecatuplex }= & \text { twice octuple } \\
& (\text { or twice }(\lambda x . \text { twice } x))
\end{aligned}
$$

Evaluation

The essence of λ-calculus evaluation is the β-reduction rule, which says how to apply a function to an argument.

$$
\overline{(\lambda x . e) v \rightarrow e\{v / x\}} \beta \text {-reduction }
$$

But there are many different evaluation strategies, each corresponding to particular ways of using β within terms:

- Full β reduction
- Call-by-value
- Call-by-name
- Normal order
- etc.

Call by value

$$
\begin{gathered}
\frac{e_{1} \rightarrow e_{1}^{\prime}}{e_{1} e_{2} \rightarrow e_{1}^{\prime} e_{2}} \quad \frac{e_{2} \rightarrow e_{2}^{\prime}}{v_{1} e_{2} \rightarrow v_{1} e_{2}^{\prime}} \\
\overline{\left(\lambda x \cdot e_{1}\right) v_{2} \rightarrow e_{1}\left\{v_{2} / x\right\}} \beta
\end{gathered}
$$

Key characteristics:

- Arguments evaluated fully before they are supplied to functions
- Evaluation goes from left to right (in this presentation)
- We don't evaluate "under a $\lambda^{\prime \prime}$

Call by name

$$
\frac{e_{1} \rightarrow e_{1}^{\prime}}{e_{1} e_{2} \rightarrow e_{1}^{\prime} e_{2}}
$$

$\overline{\left(\lambda x \cdot e_{1}\right) e_{2} \rightarrow e_{1}\left\{e_{2} / x\right\}} \beta$
Key characteristics:

- Arguments supplied immediately to functions
- Evaluation still goes from left to right (in this presentation)
- We still don't evaluate "under a $\lambda^{\prime \prime}$

Question

Fully evaluating any λ-calculus term under call by value and call by name will produce the same result?
A. True
B. False

$$
\begin{gathered}
\frac{e_{1} \rightarrow e_{1}^{\prime}}{e_{1} e_{2} \rightarrow e_{1}^{\prime} e_{2}} \quad \frac{e_{2} \rightarrow e_{2}^{\prime}}{e_{1} e_{2} \rightarrow e_{1} e_{2}^{\prime}} \\
\frac{e \rightarrow e^{\prime}}{\lambda x \cdot e \rightarrow \lambda x \cdot e^{\prime}} \\
\frac{\left(\lambda x \cdot e_{1}\right) e_{2} \rightarrow e_{1}\left\{e_{2} / x\right\}}{} \beta
\end{gathered}
$$

Key characteristics:

- Use the β rule anywhere...
- ...including "under a $\lambda^{\prime \prime}$

Question

Which of the following strategies terminate?
A. Call by value
B. Call by name
C. Full β reduction
D. All of them
E. None of them

Question

Which of the following strategies are non-deterministic?
A. Call by value
B. Call by name
C. Full β reduction
D. All of them
E. None of them

Question

Does the non-determinism in full β reduction affect the final result?
A. Yes
B. No

Confluence

Full β reduction has the following property:

Confluence

Full β reduction has the following property:

Theorem (Confluence)

If $e \rightarrow^{*} e_{1}$ and $e \rightarrow^{*} e_{2}$ then $e_{1} \rightarrow^{*} e^{\prime}$ and $e_{2} \rightarrow^{*} e^{\prime}$ for some e^{\prime}.

Substitution

The main workhorse in the β rule is substitution, which replaces free occurrences of a variable x with a term e

However, defining substitution correctly is actually quite subtle

Substitution I

As a first attempt, consider the following:

Substitution I

As a first attempt, consider the following:

$$
y\{e / x\}= \begin{cases}e & \text { if } y=x \\ y & \text { otherwise }\end{cases}
$$

Substitution I

As a first attempt, consider the following:

$$
\begin{aligned}
y\{e / x\} & = \begin{cases}e & \text { if } y=x \\
y & \text { otherwise }\end{cases} \\
\left(e_{1} e_{2}\right)\{e / x\} & =\left(e_{1}\{e / x\}\right)\left(e_{2}\{e / x\}\right)
\end{aligned}
$$

Substitution I

As a first attempt, consider the following:

$$
\begin{aligned}
y\{e / x\} & = \begin{cases}e & \text { if } y=x \\
y & \text { otherwise }\end{cases} \\
\left(e_{1} e_{2}\right)\{e / x\} & =\left(e_{1}\{e / x\}\right)\left(e_{2}\{e / x\}\right) \\
\left(\lambda y \cdot e_{1}\right)\{e / x\} & =\lambda y \cdot e_{1}\{e / x\}
\end{aligned}
$$

Substitution I

As a first attempt, consider the following:

$$
\begin{aligned}
y\{e / x\} & = \begin{cases}e & \text { if } y=x \\
y & \text { otherwise }\end{cases} \\
\left(e_{1} e_{2}\right)\{e / x\} & =\left(e_{1}\{e / x\}\right)\left(e_{2}\{e / x\}\right) \\
\left(\lambda y \cdot e_{1}\right)\{e / x\} & =\lambda y \cdot e_{1}\{e / x\}
\end{aligned}
$$

What's wrong with this definition?

Substitution I

As a first attempt, consider the following:

$$
\begin{aligned}
y\{e / x\} & = \begin{cases}e & \text { if } y=x \\
y & \text { otherwise }\end{cases} \\
\left(e_{1} e_{2}\right)\{e / x\} & =\left(e_{1}\{e / x\}\right)\left(e_{2}\{e / x\}\right) \\
\left(\lambda y \cdot e_{1}\right)\{e / x\} & =\lambda y \cdot e_{1}\{e / x\}
\end{aligned}
$$

What's wrong with this definition?
It substitutes bound variables too!

$$
(\lambda y \cdot y)\{3 / y\}
$$

Substitution I

As a first attempt, consider the following:

$$
\begin{aligned}
y\{e / x\} & = \begin{cases}e & \text { if } y=x \\
y & \text { otherwise }\end{cases} \\
\left(e_{1} e_{2}\right)\{e / x\} & =\left(e_{1}\{e / x\}\right)\left(e_{2}\{e / x\}\right) \\
\left(\lambda y \cdot e_{1}\right)\{e / x\} & =\lambda y \cdot e_{1}\{e / x\}
\end{aligned}
$$

What's wrong with this definition?
It substitutes bound variables too!

$$
(\lambda y \cdot y)\{3 / y\}=(\lambda y \cdot 3)
$$

Substitution II

Okay... since we are working up to α-equivalence, let's replace the variables used in abstractions so they are different than the variable being substituted.

Substitution II

Okay... since we are working up to α-equivalence, let's replace the variables used in abstractions so they are different than the variable being substituted.

$$
y\{e / x\}= \begin{cases}e & \text { if } y=x \\ y & \text { otherwise }\end{cases}
$$

Substitution II

Okay... since we are working up to α-equivalence, let's replace the variables used in abstractions so they are different than the variable being substituted.

$$
\begin{aligned}
y\{e / x\} & = \begin{cases}e & \text { if } y=x \\
y & \text { otherwise }\end{cases} \\
\left(e_{1} e_{2}\right)\{e / x\} & =\left(e_{1}\{e / x\}\right)\left(e_{2}\{e / x\}\right)
\end{aligned}
$$

Substitution II

Okay... since we are working up to α-equivalence, let's replace the variables used in abstractions so they are different than the variable being substituted.

$$
\begin{aligned}
y\{e / x\} & =\left\{\begin{array}{l}
e \text { if } y=x \\
y \text { otherwise }
\end{array}\right. \\
\left(e_{1} e_{2}\right)\{e / x\} & =\left(e_{1}\{e / x\}\right)\left(e_{2}\{e / x\}\right) \\
\left(\lambda y \cdot e_{1}\right)\{e / x\} & =\lambda y \cdot e_{1}\{e / x\} \quad \text { where } y \neq x
\end{aligned}
$$

Substitution II

Okay... since we are working up to α-equivalence, let's replace the variables used in abstractions so they are different than the variable being substituted.

$$
\begin{aligned}
y\{e / x\} & =\left\{\begin{array}{l}
e \text { if } y=x \\
y \text { otherwise }
\end{array}\right. \\
\left(e_{1} e_{2}\right)\{e / x\} & =\left(e_{1}\{e / x\}\right)\left(e_{2}\{e / x\}\right) \\
\left(\lambda y \cdot e_{1}\right)\{e / x\} & =\lambda y \cdot e_{1}\{e / x\} \quad \text { where } y \neq x
\end{aligned}
$$

What's wrong with this definition?

Substitution II

Okay... since we are working up to α-equivalence, let's replace the variables used in abstractions so they are different than the variable being substituted.

$$
\begin{aligned}
y\{e / x\} & =\left\{\begin{array}{l}
e \text { if } y=x \\
y \text { otherwise }
\end{array}\right. \\
\left(e_{1} e_{2}\right)\{e / x\} & =\left(e_{1}\{e / x\}\right)\left(e_{2}\{e / x\}\right) \\
\left(\lambda y . e_{1}\right)\{e / x\} & =\lambda y \cdot e_{1}\{e / x\} \quad \text { where } y \neq x
\end{aligned}
$$

What's wrong with this definition?
It leads to variable capture!

$$
(\lambda y . x)\{y / x\}
$$

Substitution II

Okay... since we are working up to α-equivalence, let's replace the variables used in abstractions so they are different than the variable being substituted.

$$
\begin{aligned}
y\{e / x\} & =\left\{\begin{array}{l}
e \text { if } y=x \\
y \text { otherwise }
\end{array}\right. \\
\left(e_{1} e_{2}\right)\{e / x\} & =\left(e_{1}\{e / x\}\right)\left(e_{2}\{e / x\}\right) \\
\left(\lambda y . e_{1}\right)\{e / x\} & =\lambda y \cdot e_{1}\{e / x\} \quad \text { where } y \neq x
\end{aligned}
$$

What's wrong with this definition?
It leads to variable capture!

$$
(\lambda y \cdot x)\{y / x\}=(\lambda y \cdot y)
$$

Substitution III

The correct definition is capture-avoiding substitution:

$$
\begin{aligned}
y\{e / x\} & = \begin{cases}e & \text { if } y \neq x \\
y & \text { otherwise }\end{cases} \\
\left(e_{1} e_{2}\right)\{e / x\} & =\left(e_{1}\{e / x\}\right)\left(e_{2}\{e / x\}\right) \\
\left(\lambda y \cdot e_{1}\right)\{e / x\} & =\lambda y \cdot\left(e_{1}\{e / x\}\right)
\end{aligned}
$$

where $y \neq x$ and $y \notin f v(e)$

