CS4110

Programming Languages & Logics

Lecture 9
Axiomatic Semantics

17 September 2014



Announcements

e Homework #2 due tonight at 11:59pm
e Homework #3 out today
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e Relatively easy to define
e (lose connection to implementations
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Review

Operational Semantics

e Describes how programs compute

e Relatively easy to define

e Close connection to implementations
Denotational Semantics

e Describes what programs compute

e Solid mathematical foundation

e Simplifies equational reasoning
Axiomatic Semantics

e Describes the properties programs satisfy
Useful for reasoning about correctness
History: Pioneered by Floyd & Hoare
Further refined by Djikstra & Gries
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To define an axiomatic semantics we need:
e Alanguage for expressing program properties

e Proof rules for establishing the validity of particular properties
with respect to specific programs
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Axiomatic Semantics

To define an axiomatic semantics we need:
e Alanguage for expressing program properties

e Proof rules for establishing the validity of particular properties
with respect to specific programs

Assertions:

e The value of x is greater than 0

e The value of y is even

e The value of zis prime

Assertion Languages:

e First-order logic: V¥, 3, A, V,x =y, R(x), ...
e Temporal or modal logic: [, ¢, X, U, F, ...

e Special-purpose logics:  Alloy, Sugar, Z3, etc.



Applications

e Proving correctness
e Documentation

e Test generation

e Symbolic execution
e Translation validation
e Bug finding

e Malware detection



Pre-Conditions and Post-conditions

Assertions are often used (informally) in code

/* Precondition: 0 <=i < Alength */
/* Postcondition: returns A[i] */
public int get(int i) {

return Alil;

}

These assertions are useful as documentation, but there is no
guarantee they are correct.

Idea: make this rigorous by defining the semantics of the language
in terms of pre-conditions and post-conditions!



Partial Correctness

Recall the syntax of IMP:

a € Aexp ar=x|nla+a|a xa,
b € Bexp b::= true | false | a; < a,
c € Com cu=skip|x:=ala;c

| if bthen ¢, else ¢, | while b do ¢

A partial correctness statement is a triple:
{P} c{Q}

Meaning: if P holds and execution of ¢ terminates, then Q holds.



Question

Given the following partial correctness specification,
{P} while x < 0do x :=x+ 1 {x > 0}

which P makes it valid?

A. true

B. false

C. x>0

D. All of the above.

E. None of the above.



Question

Given the following partial correctness specification,
{P} while x < 0 do x := x4 1 {false}

which P makes it valid?

A. true

B. false

C. x>0

D. All of the above.

E. None of the above.



Total Correctness

Note that partial correctness specifications don't ensure that the
program will terminate—this is why they are called “partial”

Sometimes we need to know that the program will terminate

A total correctness statement is a triple:
[PlclQ]

Meaning: if P holds, then ¢ will terminate and Q holds after ¢

We'll focus mostly on partial correctness.



Example: Partial Correctness

{foo = 0 A bar =i}

baz := 0;
while foo # bar
do
baz := baz — 2;
foo := foo + 1

{baz = -2 x i}

Intuition: if we start with a store ¢ that maps foo to 0 and bar to an
integer i, and if the execution of the command terminates, then the
final store ¢’ will map baz to —2i



Example: Total Correctness

[foo=0Abar=iAi>0]
baz := 0;
while foo # bar
do
baz := baz — 2;
foo := foo + 1
[baz = =2 x ]

Intuition: if we start with a store ¢ that maps foo to 0 and bar to a
non-negative integer /, then the execution of the command will
terminate in a final store o’ will map baz to —2i

Z



Another Example

{foo =0 A bar =i}

baz := 0;

while foo # bar

do
baz := baz + foo;
foo :=foo + 1

{baz =i}

Question: is this partial correctness statement valid?



Assertions

We'll use the following language to write assertions:

I,j € LVar
acAexp :=x|i|n|a+a|a xa

P,Q € Assn ::= true | false
| ar<a;
| PLAP, | PLV P, | P =Py
| =P |Vi.P|3iP

Note that every boolean expression b is also an assertion.



Satisfaction

Next we'll define what it means for a store o to satisfy an assertion

To do this, we need an interpretion for the logical variables

[': LVar — Int,



Satisfaction

Next we'll define what it means for a store o to satisfy an assertion

To do this, we need an interpretion for the logical variables

[': LVar — Int,

Ai[n](e,1) =n
Ailx](o,1) = o(x)
Aill(o, 1) = I(i)
Ajlar + a)](o. 1) = Afai] (e, ]) + Ala:] (e, )



Satisfaction

Next we define the satisfaction relation for assertions

Definition (Assertation satisfaction)

o F true (always)

ok o <a; if Aillail(o, 1) < Ailaz](e, )
aE Pr AP, ifoE Prand o F P,

o PiVE ifo b PyoroE P,

ocFE Pr=P if o K Pyorok Py

ok P ifo & P

oF Vi.P ifVk € Int. o By P

o |:/ di. P if 3k € Int. o IZ/[,‘,_”(] P



Satisfaction

Next we define what it means for a command c to satisfy a partial
correctness statement.

Definition (Partial correctness statement satisfiability)

A partial correctness statement {P} ¢ {Q} is satisfied in store ¢ and
interpretation /, written o F, {P} c {Q}, if:

Vo'.if o E; Pand C[c]o = o' then o’ F/ Q



Validity

Definition (Assertion validity)

An assertion Pis valid (written F P) if it is valid in any store, under
any interpretation: Vo, /. o &, P

Definition (Partial correctness statement validity)

A partial correctness triple is valid (written E {P} ¢ {Q}), if it is valid
in any store and interpretation: Vo, . o E,; {P} c {Q}.

Now we know what we mean when we say “assertion P holds” or
“partial correctness statement {P} ¢ {Q} is valid”



Proving Specifications

How do we show that {P} ¢ {Q} holds?

We know that {P} ¢ {Q} is valid if it holds for all stores and
interpretations: Vo, 1. o £ {P} ¢ {Q}.

Furthermore, showing that o F, {P} ¢ {Q} requires reasoning
about the denotation of ¢, as specified by the definition of
satisfaction.

We can do this manually, but it turns out that there is a better way.

We can use a set of inference rules and axioms, called Hoare rules, to
directly derive valid partial correctness statements without having
to reason about stores, interpretations, and the execution of c.



Question

Is it decidable whether {P} ¢ {Q}?

1. Yes
2. No
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