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Announcements

Office Hours
• Fran: Wednesday at 11-12pm

Homework #1
• Due: Today

Homework #2
• Out: Today
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Review

Last time we defined the IMP programming language...

a ::=x | n | a1 + a2 | a1 × a2

b ::=true | false | a1 < a2

c ::=skip
| x := a
| c1; c2
| if b then c1 else c2
| while b do c
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Quiz: What does this program do?

x1 := n1; x2 := n2; x3 := n3; tmp := 0;
if x2 <= x1 then

tmp := x2;
x2 := x1;
x1 := tmp

else skip;
if x3 <= x2 then

tmp := x3;
x3 := x2;
x2 := tmp

else skip

4



How about this one?

x1 := n1; x2 := n2; x3 := n3; tmp := 0; swaps := 1;
while 0 < swaps do

swaps := 0;
if x2 <= x1 then

tmp := x2;
x2 := x1;
x1 := tmp;
swaps := swaps + 1

else skip;
if x3 <= x2 then

tmp := x3;
x3 := x2;
x2 := tmp;
swaps := swaps + 1

else skip
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Does this program terminate?

x1 := n1; x2 := n2; x3 := n3; tmp := 0; swaps := 1;
while 0 < swaps do

swaps := 0;
if x2 <= x1 then

tmp := x2;
x2 := x1;
x1 := tmp;
swaps := swaps + 1

else skip;
if x3 <= x2 then

tmp := x3;
x3 := x2;
x2 := tmp;
swaps := swaps + 1

else skip
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IMP Questions

• Q: Can you write a program that doesn’t terminate?

• A: while true do skip

• Q: Does this mean that IMP is Turing complete?
• A: Not quite... we also need to check the language is not finite

state... but IMP has real mathematical integers.

• Q: What if we replace Int with Int64?
• A: Then we would lose Turing completeness.

• Q: How much space do we need to represent configurations
during execution of an IMP program?

• A: Can calculate a fixed bound!
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Determinism

Theorem
∀c ∈ Com, σ, σ′ σ′′ ∈ Store.
if ⟨σ, c⟩ ⇓ σ′ and ⟨σ, c⟩ ⇓ σ′′ then σ′ = σ′′.

Proof.
By structural induction on c...

Proof.
By induction on the derivation of ⟨σ, c⟩ ⇓ σ′...
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Derivations

WriteD ⊩ y if the conclusion of derivationD is y.

Example:

Given the derivation,

⟨σ, 6⟩ ⇓ 6 ⟨σ, 7⟩ ⇓ 7

⟨σ, 6 × 7⟩ ⇓ 42

⟨σ, i := 6 × 7⟩ ⇓ σ[i 7→ 42]

we would write: D ⊩ ⟨σ, i := 42⟩ ⇓ σ[i 7→ 42]
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Induction on Derivations

Given a set of axioms and inference rules, the set of derivations is
itself an inductively defined set!

This means we can prove properties by induction on derivations!

A derivationD′ is an immediate subderivation ofD ifD′ ⊩ z where
z is one of the premises used of the final rule of derivationD.

In a proof by induction on derivations, for every axiom and
inference rule, assume that the property P holds for all immediate
subderivations, and show that it holds of the conclusion.
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Large-Step Semantics

Skip
⟨σ, skip⟩ ⇓ σ

Assgn
⟨σ, e⟩ ⇓ n

⟨σ, x := e⟩ ⇓ σ[x 7→ n]

Seq
⟨σ, c1⟩ ⇓ σ′ ⟨σ′, c2⟩ ⇓ σ′′

⟨σ, c1; c2⟩ ⇓ σ′′

If-T
⟨σ, b⟩ ⇓ true ⟨σ, c1⟩ ⇓ σ′

⟨σ, if b then c1 else c2⟩ ⇓ σ′

If-F
⟨σ, b⟩ ⇓ false ⟨σ, c2⟩ ⇓ σ′

⟨σ, if b then c1 else c2⟩ ⇓ σ′

While-T
⟨σ, b⟩ ⇓ true ⟨σ, c⟩ ⇓ σ′ ⟨σ′,while b do c⟩ ⇓ σ′′

⟨σ,while b do c⟩ ⇓ σ′′

While-F
⟨σ, b⟩ ⇓ false

⟨σ,while b do c⟩ ⇓ σ

10


