CS 4110

Programming Languages & Logics

Lecture 5
IMP Properties

10 September 2014

Announcements

Office Hours

• Fran: Wednesday at 11-12pm

Homework #1

• Due: Today

Homework #2

• Out: Today

Review

Last time we defined the IMP programming language...

$$a :== x | n | a_1 + a_2 | a_1 \times a_2$$

 $b :== true | false | a_1 < a_2$
 $c :== skip$
 $| x := a$
 $| c_1; c_2$
 $| if b then c_1 else c_2$
 $| while b do c$

3

Quiz: What does this program do?

```
x1 := n1; x2 := n2; x3 := n3; tmp := 0;
if x^2 \le x^1 then
     tmp := x2;
     x2 := x1;
     x1 := tmp
else skip;
if x3 \le x2 then
     tmp := x3;
     x3 := x2;
     x2 := tmp
else skip
```

How about this one?

```
x1 := n1; x2 := n2; x3 := n3; tmp := 0; swaps := 1;
while 0 < swaps do
     swaps := 0;
     if x^2 \le x^1 then
          tmp := x2;
          x2 := x1:
          x1 := tmp;
          swaps := swaps + 1
     else skip;
     if x3 \le x2 then
          tmp := x3;
          x3 := x2:
          x2 := tmp;
          swaps := swaps + 1
     else skip
```

Does this program terminate?

```
x1 := n1; x2 := n2; x3 := n3; tmp := 0; swaps := 1;
while 0 < swaps do
     swaps := 0;
     if x^2 \le x^1 then
          tmp := x2;
          x2 := x1:
          x1 := tmp;
          swaps := swaps + 1
     else skip;
     if x3 \le x2 then
          tmp := x3;
          x3 := x2:
          x2 := tmp;
          swaps := swaps + 1
     else skip
```

• Q: Can you write a program that doesn't terminate?

- Q: Can you write a program that doesn't terminate?
- A: while true do skip

- Q: Can you write a program that doesn't terminate?
- A: while true do skip
- Q: Does this mean that IMP is Turing complete?

- Q: Can you write a program that doesn't terminate?
- A: while true do skip
- Q: Does this mean that IMP is Turing complete?
- A: Not quite... we also need to check the language is not finite state... but IMP has real mathematical integers.

- Q: Can you write a program that doesn't terminate?
- A: while true do skip
- Q: Does this mean that IMP is Turing complete?
- A: Not quite... we also need to check the language is not finite state... but IMP has real mathematical integers.
- Q: What if we replace Int with Int64?

- Q: Can you write a program that doesn't terminate?
- A: while true do skip
- Q: Does this mean that IMP is Turing complete?
- A: Not quite... we also need to check the language is not finite state... but IMP has real mathematical integers.
- Q: What if we replace Int with Int64?
- A: Then we would lose Turing completeness.

- Q: Can you write a program that doesn't terminate?
- A: while true do skip
- Q: Does this mean that IMP is Turing complete?
- A: Not quite... we also need to check the language is not finite state... but IMP has real mathematical integers.
- Q: What if we replace Int with Int64?
- A: Then we would lose Turing completeness.
- Q: How much space do we need to represent configurations during execution of an IMP program?

- Q: Can you write a program that doesn't terminate?
- A: while true do skip
- Q: Does this mean that IMP is Turing complete?
- A: Not quite... we also need to check the language is not finite state... but IMP has real mathematical integers.
- Q: What if we replace Int with Int64?
- A: Then we would lose Turing completeness.
- Q: How much space do we need to represent configurations during execution of an IMP program?
- A: Can calculate a fixed bound!

Determinism

Theorem

 $\forall c \in \mathsf{Com}, \sigma, \sigma' \sigma'' \in \mathsf{Store}.$

if $\langle \sigma, c \rangle \Downarrow \sigma'$ and $\langle \sigma, c \rangle \Downarrow \sigma''$ then $\sigma' = \sigma''$.

7

Determinism

Theorem

 $\forall c \in \mathsf{Com}, \sigma, \sigma' \sigma'' \in \mathsf{Store}.$

if
$$\langle \sigma, c \rangle \Downarrow \sigma'$$
 and $\langle \sigma, c \rangle \Downarrow \sigma''$ then $\sigma' = \sigma''$.

Proof.

By structural induction on c...

Determinism

Theorem

 $\forall c \in \mathsf{Com}, \sigma, \sigma' \sigma'' \in \mathsf{Store}.$

if $\langle \sigma, c \rangle \Downarrow \sigma'$ and $\langle \sigma, c \rangle \Downarrow \sigma''$ then $\sigma' = \sigma''$.

Proof.

By structural induction on c...

Proof.

By induction on the derivation of $\langle \sigma, c \rangle \Downarrow \sigma'$...

Derivations

Write $\mathcal{D} \Vdash y$ if the conclusion of derivation \mathcal{D} is y.

Derivations

Write $\mathcal{D} \Vdash y$ if the conclusion of derivation \mathcal{D} is y.

Example:

Given the derivation,

$$\frac{\langle \sigma, 6 \rangle \Downarrow 6}{\langle \sigma, 6 \times 7 \rangle \Downarrow 42}$$

$$\frac{\langle \sigma, 6 \times 7 \rangle \Downarrow 42}{\langle \sigma, i := 6 \times 7 \rangle \Downarrow \sigma[i \mapsto 42]}$$

we would write: $\mathcal{D} \Vdash \langle \sigma, i := 42 \rangle \Downarrow \sigma[i \mapsto 42]$

Given a set of axioms and inference rules, the set of derivations is itself an inductively defined set!

Given a set of axioms and inference rules, the set of derivations is itself an inductively defined set!

This means we can prove properties by induction on derivations!

Given a set of axioms and inference rules, the set of derivations is itself an inductively defined set!

This means we can prove properties by induction on derivations!

A derivation \mathcal{D}' is an immediate subderivation of \mathcal{D} if $\mathcal{D}' \Vdash z$ where z is one of the premises used of the final rule of derivation \mathcal{D} .

Given a set of axioms and inference rules, the set of derivations is itself an inductively defined set!

This means we can prove properties by induction on derivations!

A derivation \mathcal{D}' is an immediate subderivation of \mathcal{D} if $\mathcal{D}' \Vdash z$ where z is one of the premises used of the final rule of derivation \mathcal{D} .

In a proof by induction on derivations, for every axiom and inference rule, assume that the property *P* holds for all immediate subderivations, and show that it holds of the conclusion.

Large-Step Semantics

Skip
$$\frac{\langle \sigma, e \rangle \Downarrow n}{\langle \sigma, \text{skip} \rangle \Downarrow \sigma}$$
 Assgn $\frac{\langle \sigma, e \rangle \Downarrow n}{\langle \sigma, x := e \rangle \Downarrow \sigma[x \mapsto n]}$ Seq $\frac{\langle \sigma, c_1 \rangle \Downarrow \sigma' \quad \langle \sigma', c_2 \rangle \Downarrow \sigma''}{\langle \sigma, c_1; c_2 \rangle \Downarrow \sigma''}$ If-T $\frac{\langle \sigma, b \rangle \Downarrow \text{true} \quad \langle \sigma, c_1 \rangle \Downarrow \sigma'}{\langle \sigma, \text{if } b \text{ then } c_1 \text{ else } c_2 \rangle \Downarrow \sigma'}$ If-F $\frac{\langle \sigma, b \rangle \Downarrow \text{false} \quad \langle \sigma, c_2 \rangle \Downarrow \sigma'}{\langle \sigma, \text{if } b \text{ then } c_1 \text{ else } c_2 \rangle \Downarrow \sigma'}$ While-T $\frac{\langle \sigma, b \rangle \Downarrow \text{true} \quad \langle \sigma, c \rangle \Downarrow \sigma' \quad \langle \sigma', \text{while } b \text{ do } c \rangle \Downarrow \sigma''}{\langle \sigma, \text{while } b \text{ do } c \rangle \Downarrow \sigma''}$ While-F $\frac{\langle \sigma, b \rangle \Downarrow \text{false}}{\langle \sigma, \text{while } b \text{ do } c \rangle \Downarrow \sigma''}$