## CS 4110

## Programming Languages & Logics

# Lecture 2 Introduction to Semantics

29 August 2012

#### Announcements

#### Wednesday Lecture

• Moved to Thurston 203

#### Foster Office Hours

• Today 11a-12pm in Gates 432

#### Mota Office Hours

- Wed 11am-12pm in TBD
- Thurs 2:30pm-4pm in TBD

#### Homework #1

- Out: Wednesday, September 3rd
- Due: Wednesday, September 10th
- Distributed via CMS

Question: What is the meaning of a program?

Question: What is the meaning of a program?

Answer: We could execute the program using an interpreter or a compiler, or we could consult a manual...



#### A6.7 Void

The (nonextistent) value of a void object may not be used in any way, and neither explicit nor implicit conversion to any non-void type may be applied. Because a void expression denotes a nonexistent value, such an expression may be used only where the value is not required, for example as an expression statement (\$A9.2) or as the left operand of a comma operator (\$A7.18).

An expression may be converted to type void by a cast. For example, a void cast documents the discarding of the value of a function call used as an expression statement.

void did not appear in the first edition of this book, but has become common since.

...but none of these is a satisfactory solution.

#### Formal Semantics

#### Three Approaches

• Operational

$$\langle \sigma, e \rangle \longrightarrow \langle \sigma', e' \rangle$$

- Model program by execution on abstract machine
- Useful for implementing compilers and interpreters
- Denotational:
  - Model program as mathematical objects
  - Useful for theoretical foundations
- Axiomatic
  - Model program by the logical formulas it obeys
  - Useful for proving program correctness

 $\vdash \{\phi\} e \{\psi\}$ 

# Arithmetic Expressions

A language of integer arithmetic expressions with assignment.

Syntax

A language of integer arithmetic expressions with assignment.

Metavariables:

$$x, y, z \in$$
 Var  
 $n, m \in$  Int  
 $e \in$  Exp

Sy ntax

A language of integer arithmetic expressions with assignment.

Metavariables:

| х, у, г | $\in$ | Var |
|---------|-------|-----|
| n, m    | $\in$ | Int |
| е       | $\in$ | Ехр |

**BNF Grammar:** 

$$e ::= x | n | e_1 + e_2 | e_1 * e_2 | x := e_1 ; e_2$$

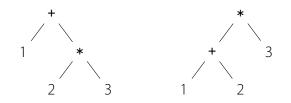
### Ambiguity

What expression does the string "1 + 2 \* 3" describe?

### Ambiguity

What expression does the string "1 + 2 \* 3" describe?

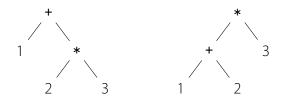
There are two possible parse trees:



#### Ambiguity

What expression does the string "1 + 2 \* 3" describe?

There are two possible parse trees:



In this course, we will distinguish abstract syntax from concrete syntax, and focus primarily on abstract syntax (using conventions or parentheses at the concrete level to disambiguate as needed).

#### Representing Expressions

**BNF** Grammar:

$$e ::= x | n | e_1 + e_2 | e_1 * e_2 | x := e_1 ; e_2$$

#### Representing Expressions

**BNF** Grammar:

$$e ::= x | n | e_1 + e_2 | e_1 * e_2 | x := e_1 ; e_2$$

OCaml:

Example: Mul(Int 2, Add(Var "foo", Int 1))

#### Representing Expressions

**BNF** Grammar:

$$e ::= x | n | e_1 + e_2 | e_1 * e_2 | x := e_1 ; e_1$$

#### Java:

abstract class Expr { } class Var extends Expr { String name; ... } class Int extends Expr { int val; ... } class Add extends Expr { Expr exp1, exp2; ... } class Mul extends Expr { Expr exp1, exp2; ... } class Assgn extends Expr { String var, Expr exp1, exp2; ... }

Example: new Mul(new Int(2), new Add(new Var("foo"), new Int(1)))

• 7 + (4 \* 2) evaluates to ...?

• 7 + (4 \* 2) evaluates to 15

- 7 + (4 \* 2) evaluates to 15
- *i* := 6 + 1 ; 2 \* 3 \* *i* evaluates to ...?

- 7 + (4 \* 2) evaluates to 15
- *i* := 6 + 1 ; 2 \* 3 \* *i* evaluates to 42

- 7 + (4 \* 2) evaluates to 15
- *i* := 6 + 1 ; 2 \* 3 \* *i* evaluates to 42
- *x* + 1 evaluates to ...?

- 7 + (4 \* 2) evaluates to 15
- *i* := 6 + 1 ; 2 \* 3 \* *i* evaluates to 42
- *x* + 1 evaluates to error?

- 7 + (4 \* 2) evaluates to 15
- *i* := 6 + 1 ; 2 \* 3 \* *i* evaluates to 42
- *x* + 1 evaluates to error?

The rest of this lecture will make these intuitions precise...

# Mathematical Preliminaries

#### **Binary Relations**

The *product* of two sets A and B, written  $A \times B$ , contains all ordered pairs (a, b) with  $a \in A$  and  $b \in B$ .

The *product* of two sets A and B, written  $A \times B$ , contains all ordered pairs (a, b) with  $a \in A$  and  $b \in B$ .

A binary relation on A and B is just a subset  $R \subseteq A \times B$ .

The *product* of two sets A and B, written  $A \times B$ , contains all ordered pairs (a, b) with  $a \in A$  and  $b \in B$ .

A binary relation on A and B is just a subset  $R \subseteq A \times B$ .

Given a binary relation  $R \subseteq A \times B$ , the set A is called the *domain* of R and B is called the *range* (or *codomain*) of R.

The *product* of two sets A and B, written  $A \times B$ , contains all ordered pairs (a, b) with  $a \in A$  and  $b \in B$ .

A binary relation on A and B is just a subset  $R \subseteq A \times B$ .

Given a binary relation  $R \subseteq A \times B$ , the set A is called the *domain* of R and B is called the *range* (or *codomain*) of R.

Some Important Relations

- empty  $\emptyset$
- total  $A \times B$
- identity on  $A \{(a, a) \mid a \in A\}$ .
- composition R;  $S \{(a, c) | \exists b. (a, b) \in R \land (b, c) \in S\}$

#### Functions

A (*total*) function f is a binary relation  $f \subseteq A \times B$  with the property that every  $a \in A$  is related to exactly one  $b \in B$ 

A (*total*) function f is a binary relation  $f \subseteq A \times B$  with the property that every  $a \in A$  is related to exactly one  $b \in B$ 

When *f* is a function, we usually write  $f : A \rightarrow B$  instead of  $f \subseteq A \times B$ 

A (*total*) function f is a binary relation  $f \subseteq A \times B$  with the property that every  $a \in A$  is related to exactly one  $b \in B$ 

When *f* is a function, we usually write  $f : A \rightarrow B$  instead of  $f \subseteq A \times B$ 

The *domain* and *range* of *f* are defined the same way as for relations

A (*total*) function f is a binary relation  $f \subseteq A \times B$  with the property that every  $a \in A$  is related to exactly one  $b \in B$ 

When *f* is a function, we usually write  $f : A \rightarrow B$  instead of  $f \subseteq A \times B$ 

The *domain* and *range* of *f* are defined the same way as for relations

The *image* of *f* is the set of elements  $b \in B$  that are mapped to by at least one  $a \in A$ . More formally: image $(f) \triangleq \{f(a) \mid a \in A\}$ 

#### Some Important Functions

Given two functions  $f : A \to B$  and  $g : B \to C$ , the composition of f and g is defined by:  $(g \circ f)(x) = g(f(x))$  Note order!

#### Some Important Functions

Given two functions  $f : A \to B$  and  $g : B \to C$ , the composition of f and g is defined by:  $(g \circ f)(x) = g(f(x))$  Note order!

A partial function  $f : A \rightarrow B$  is a total function  $f : A' \rightarrow B$  on a set  $A' \subseteq A$ . The notation dom(f) refers to A'.

#### Some Important Functions

Given two functions  $f : A \to B$  and  $g : B \to C$ , the composition of f and g is defined by:  $(g \circ f)(x) = g(f(x))$  Note order!

A partial function  $f : A \rightarrow B$  is a total function  $f : A' \rightarrow B$  on a set  $A' \subseteq A$ . The notation dom(f) refers to A'.

A function  $f : A \to B$  is said to be *injective* (or *one-to-one*) if and only if  $a_1 \neq a_2$  implies  $f(a_1) \neq f(a_2)$ .

Given two functions  $f : A \to B$  and  $g : B \to C$ , the composition of f and g is defined by:  $(g \circ f)(x) = g(f(x))$  Note order!

A partial function  $f : A \rightarrow B$  is a total function  $f : A' \rightarrow B$  on a set  $A' \subseteq A$ . The notation dom(f) refers to A'.

A function  $f : A \to B$  is said to be *injective* (or *one-to-one*) if and only if  $a_1 \neq a_2$  implies  $f(a_1) \neq f(a_2)$ .

A function  $f : A \rightarrow B$  is said to be *surjective* (or *onto*) if and only if the image of f is B.

# **Operational Semantics**

A small-step semantics describes how such an execution proceeds in terms of successive reductions:  $\langle \sigma, e \rangle \longrightarrow \langle \sigma', e' \rangle$ 

A small-step semantics describes how such an execution proceeds in terms of successive reductions:  $\langle \sigma, e \rangle \longrightarrow \langle \sigma', e' \rangle$ 

For our language, a configuration  $\langle \sigma, e \rangle$  has two components:

- a store  $\sigma$  that records the values of variables
- and the expression *e* being evaluated

A small-step semantics describes how such an execution proceeds in terms of successive reductions:  $\langle \sigma, e \rangle \longrightarrow \langle \sigma', e' \rangle$ 

For our language, a configuration  $\langle \sigma, e \rangle$  has two components:

- a store  $\sigma$  that records the values of variables
- and the expression *e* being evaluated

More formally,

# $\begin{array}{rcl} \mathsf{Store} & \triangleq & \mathsf{Var} \rightharpoonup \mathsf{Int} \\ \mathsf{Config} & \triangleq & \mathsf{Store} \times \mathsf{Exp} \end{array}$

Note that a store is a *partial* function from variables to integers.

Notation:  $\langle \sigma, e \rangle \longrightarrow \langle \sigma', e' \rangle$ 

Notation:  $\langle \sigma, e \rangle \longrightarrow \langle \sigma', e' \rangle$ 

Question: How should we define this relation?

Notation: 
$$\langle \sigma, e \rangle \longrightarrow \langle \sigma', e' \rangle$$

Question: How should we define this relation? Note that there are an infinite number of configurations and possible steps!

Notation: 
$$\langle \sigma, e \rangle \longrightarrow \langle \sigma', e' \rangle$$

Question: How should we define this relation? Note that there are an infinite number of configurations and possible steps!

Answer: define it inductively, using inference rules:

$$\frac{p = m + n}{\langle \sigma, n + m \rangle \longrightarrow \langle \sigma, p \rangle} \text{ Add}$$

Notation: 
$$\langle \sigma, e \rangle \longrightarrow \langle \sigma', e' \rangle$$

Question: How should we define this relation? Note that there are an infinite number of configurations and possible steps!

Answer: define it inductively, using inference rules:

$$\frac{p = m + n}{\langle \sigma, n + m \rangle \longrightarrow \langle \sigma, p \rangle} \text{ Add}$$

Intuitively, if facts above the line hold, then facts below the line hold. More formally, " $\longrightarrow$ " is the smallest relation "closed" under the inference rules.

### Variables

$$\frac{n = \sigma(x)}{\langle \sigma, x \rangle \longrightarrow \langle \sigma, n \rangle} \text{ Var}$$

#### Addition

$$\frac{\langle \sigma, e_1 \rangle \longrightarrow \langle \sigma', e_1' \rangle}{\langle \sigma, e_1 + e_2 \rangle \longrightarrow \langle \sigma', e_1' + e_2 \rangle} \text{ LAdd}$$

#### Addition

$$\frac{\langle \sigma, e_1 \rangle \longrightarrow \langle \sigma', e_1' \rangle}{\langle \sigma, e_1 + e_2 \rangle \longrightarrow \langle \sigma', e_1' + e_2 \rangle} \text{ LAdd}$$
$$\frac{\langle \sigma, e_2 \rangle \longrightarrow \langle \sigma', e_2' \rangle}{\langle \sigma, n + e_2 \rangle \longrightarrow \langle \sigma', n + e_2' \rangle} \text{ RAdd}$$

#### Addition

$$\frac{\langle \sigma, e_1 \rangle \longrightarrow \langle \sigma', e_1' \rangle}{\langle \sigma, e_1 + e_2 \rangle \longrightarrow \langle \sigma', e_1' + e_2 \rangle} \text{ LAdd}$$
$$\frac{\langle \sigma, e_2 \rangle \longrightarrow \langle \sigma', e_2' \rangle}{\langle \sigma, n + e_2 \rangle \longrightarrow \langle \sigma', n + e_2' \rangle} \text{ RAdd}$$
$$\frac{p = m + n}{\langle \sigma, n + m \rangle \longrightarrow \langle \sigma, p \rangle} \text{ Add}$$

# Multiplication

$$\frac{\langle \sigma, e_1 \rangle \longrightarrow \langle \sigma', e_1' \rangle}{\langle \sigma, e_1 \ast e_2 \rangle \longrightarrow \langle \sigma', e_1' \ast e_2 \rangle} \text{ LMul}$$

# Multiplication

$$\frac{\langle \sigma, e_1 \rangle \longrightarrow \langle \sigma', e_1' \rangle}{\langle \sigma, e_1 \ast e_2 \rangle \longrightarrow \langle \sigma', e_1' \ast e_2 \rangle} \text{ LMul}$$
$$\frac{\langle \sigma, e_2 \rangle \longrightarrow \langle \sigma', e_2' \rangle}{\langle \sigma, n \ast e_2 \rangle \longrightarrow \langle \sigma', n \ast e_2' \rangle} \text{ RMul}$$

# Multiplication

$$\frac{\langle \sigma, e_1 \rangle \longrightarrow \langle \sigma', e_1' \rangle}{\langle \sigma, e_1 \ast e_2 \rangle \longrightarrow \langle \sigma', e_1' \ast e_2 \rangle} \text{ LMu}$$
$$\frac{\langle \sigma, e_2 \rangle \longrightarrow \langle \sigma', e_2' \rangle}{\langle \sigma, n \ast e_2 \rangle \longrightarrow \langle \sigma', n \ast e_2' \rangle} \text{ RMul}$$
$$\frac{p = m \times n}{\langle \sigma, m \ast n \rangle \longrightarrow \langle \sigma, p \rangle} \text{ Mul}$$

# Assignment

$$\frac{\langle \sigma, e_1 \rangle \longrightarrow \langle \sigma', e_1' \rangle}{\langle \sigma, x := e_1 ; e_2 \rangle \longrightarrow \langle \sigma', x := e_1' ; e_2 \rangle} \text{ Assgn1}$$

#### Assignment

$$\frac{\langle \sigma, e_1 \rangle \longrightarrow \langle \sigma', e_1' \rangle}{\langle \sigma, x := e_1 ; e_2 \rangle \longrightarrow \langle \sigma', x := e_1' ; e_2 \rangle} \text{ Assgn1}$$

$$\frac{\sigma' = \sigma[x \mapsto n]}{\langle \sigma, x := n ; e_2 \rangle \longrightarrow \langle \sigma', e_2 \rangle} \text{ Assgn}$$

Notation:  $\sigma[x \mapsto n]$  maps x to n and otherwise behaves like  $\sigma$ 

## **Operational Semantics**

$$\frac{n = \sigma(x)}{\langle \sigma, x \rangle \to \langle \sigma, n \rangle} \text{ Var } \qquad \frac{\langle \sigma, e_1 \rangle \to \langle \sigma', e_1' \rangle}{\langle \sigma, e_1 + e_2 \rangle \to \langle \sigma', e_1' + e_2 \rangle} \text{ LAdd}$$

$$\frac{\langle \sigma, e_2 \rangle \to \langle \sigma', e_2' \rangle}{\langle \sigma, n + e_2 \rangle \to \langle \sigma', n + e_2' \rangle} \text{ RAdd} \qquad \frac{p = m + n}{\langle \sigma, n + m \rangle \to \langle \sigma, p \rangle} \text{ Add}$$

$$\frac{\langle \sigma, e_1 \rangle \to \langle \sigma', e_1' \rangle}{\langle \sigma, e_1 \ast e_2 \rangle \to \langle \sigma', e_1' \ast e_2 \rangle} \text{ LMul} \qquad \frac{\langle \sigma, e_2 \rangle \to \langle \sigma', e_2' \rangle}{\langle \sigma, n \ast e_2 \rangle \to \langle \sigma', n \ast e_2' \rangle} \text{ RMul}$$

$$\frac{p = m \times n}{\langle \sigma, m * n \rangle \to \langle \sigma, p \rangle} \text{ Mul } \qquad \frac{\langle \sigma, e_1 \rangle \to \langle \sigma', e_1' \rangle}{\langle \sigma, x := e_1 ; e_2 \rangle \to \langle \sigma', x := e_1' ; e_2 \rangle} \text{ Assgn1}$$

$$\frac{\sigma' = \sigma[x \mapsto n]}{\langle \sigma, x := n ; e_2 \rangle \to \langle \sigma', e_2 \rangle} \text{ Assgr}$$