
..

CS 4110

Programming Languages & Logics

Lecture 1
Course Overview

26 August 2014

Programming Languages

One of the oldest öelds in Computer Science...
• λ-calculus – Church (1936)
• FORTRAN – Backus (1957)
• LISP – McCarthy (1958)
• ALGOL 60 – Backus, Naur, Perlis, & others (1960)
• Pascal – Wirth (1970)
• C – Ritchie (1972)
• Smalltalk – Kay & others (1972)
• ML – Milner and others (1978)
• C++ – Stroustrup (1982)
• Haskell – Hudak, Peyton Jones, Wadler, & others (1989)
• Java – Gosling (1995)
• C# – Microsoft (2001)
• Scala – Odersky (2003)
• F# – Syme (2005)

2

Programming Languages

...and one of the most vibrant areas today!

PL intersects with many other areas of computing

Current trends

• Domain-speciöc languages
• Static analysis and types
• Language-based security
• Veriöcation and model checking
• Concurrency

Both theoretically and practically “meaty”

3

Syllabus

Course Staff

Instructor
Nate Foster
Office: Gates 432
Hours: Mon 4-5pm and Friday 11am-12pm

Teaching Assistant
Fran Mota
Office: Hours: TBA

Web Page
http://www.cs.cornell.edu/Courses/cs4110/2014fa

Discussion
http://www.piazza.com

5

Course Goals

• Techniques for modeling programs∗ mathematically
▶ Operational, axiomatic, and denotational semantics
▶ Examples with advanced features
▶ Reasoning principles (induction, co-induction)

• Explore applications of these techniques
▶ Optimization
▶ Type systems
▶ Veriöcation

• Gain experience implementing languages
▶ Interpreters
▶ Program transformations
▶ Analysis tools

• PhD students: cover material for PL qualifying exam
• Have fun :-)

*and whole languages!
6

Prerequisites

Mathematical Maturity

• Much of this class will involve formal reasoning
• Set theory, formal proofs, induction
• Most challenging topic: denotational semantics

Programming Experience

• Comfortable using a functional language
• For undergrads: CS 3110 or equivalent

Interest (having fun is a goal! :-)

If you don’t meet these prerequisites, get in touch

7

.....

.

Mathematical Preliminaries &
Operational Semantics

.

Denotational & Axiomatic Semantics

.

λ-calculus

.

Preliminary Exam I

.

Fall Break

.

Type Systems &
Program Analyses

.

Preliminary Exam II

.

Advanced Topics

.

Final Exam

..

8

......

Mathematical Preliminaries &
Operational Semantics

.

Denotational & Axiomatic Semantics

.

λ-calculus

.

Preliminary Exam I

.

Fall Break

.

Type Systems &
Program Analyses

.

Preliminary Exam II

.

Advanced Topics

.

Final Exam

..

8

......

Mathematical Preliminaries &
Operational Semantics

.

Denotational & Axiomatic Semantics

.

λ-calculus

.

Preliminary Exam I

.

Fall Break

.

Type Systems &
Program Analyses

.

Preliminary Exam II

.

Advanced Topics

.

Final Exam

..

8

......

Mathematical Preliminaries &
Operational Semantics

.

Denotational & Axiomatic Semantics

.

λ-calculus

.

Preliminary Exam I

.

Fall Break

.

Type Systems &
Program Analyses

.

Preliminary Exam II

.

Advanced Topics

.

Final Exam

..

8

......

Mathematical Preliminaries &
Operational Semantics

.

Denotational & Axiomatic Semantics

.

λ-calculus

.

Preliminary Exam I

.

Fall Break

.

Type Systems &
Program Analyses

.

Preliminary Exam II

.

Advanced Topics

.

Final Exam

..

8

......

Mathematical Preliminaries &
Operational Semantics

.

Denotational & Axiomatic Semantics

.

λ-calculus

.

Preliminary Exam I

.

Fall Break

.

Type Systems &
Program Analyses

.

Preliminary Exam II

.

Advanced Topics

.

Final Exam

..

8

......

Mathematical Preliminaries &
Operational Semantics

.

Denotational & Axiomatic Semantics

.

λ-calculus

.

Preliminary Exam I

.

Fall Break

.

Type Systems &
Program Analyses

.

Preliminary Exam II

.

Advanced Topics

.

Final Exam

..

8

......

Mathematical Preliminaries &
Operational Semantics

.

Denotational & Axiomatic Semantics

.

λ-calculus

.

Preliminary Exam I

.

Fall Break

.

Type Systems &
Program Analyses

.

Preliminary Exam II

.

Advanced Topics

.

Final Exam

..

8

......

Mathematical Preliminaries &
Operational Semantics

.

Denotational & Axiomatic Semantics

.

λ-calculus

.

Preliminary Exam I

.

Fall Break

.

Type Systems &
Program Analyses

.

Preliminary Exam II

.

Advanced Topics

.

Final Exam

..

8

......

Mathematical Preliminaries &
Operational Semantics

.

Denotational & Axiomatic Semantics

.

λ-calculus

.

Preliminary Exam I

.

Fall Break

.

Type Systems &
Program Analyses

.

Preliminary Exam II

.

Advanced Topics

.

Final Exam

..

8

.....

.

Mathematical Preliminaries &
Operational Semantics

.

Denotational & Axiomatic Semantics

.

λ-calculus

.

Preliminary Exam I

.

Fall Break

.

Type Systems &
Program Analyses

.

Preliminary Exam II

.

Advanced Topics

.

Final Exam

..

8

Course Work

Participation (5%)
• Lectures
• Office hours
• Online discussions
Homework (40%)
• 10 assignments, roughly one per week
• Mix of theory and practice
• Can work with one partner
• No late submissions
• Two slip days and lowest score discarded
Preliminary Exams (15% each)
• October 6th
• November 14th
Final Exam (25%)
• Date TBD

9

Academic Integrity

Some simple requests:

1. You are here as members of an academic community. Conduct
yourself with integrity.

2. Problem sets must be completed with your partner, and only
your partner. You must not consult other students, alums,
friends, Google, GitHub, StackExchange, Course Hero, etc.!

3. If you aren’t sure what is allowed and what isn’t, please ask.

10

Special Needs and Wellness

• I will provide reasonable accommodations to students with
documented disabilities (e.g., physical, learning, psychiatric,
vision, hearing, or systemic).

• If you are experiencing undue personal or academic stress at
any time during the semester (or if you notice that a fellow
student is), contact me, Engineering Advising, or Gannett.

11

Language Speciöcation

Language Speciöcation

Formal Semantics: what do programs mean?

Three Approaches

• Operational
▶ Models program by its execution on abstract machine
▶ Useful for implementing compilers and interpreters

• Axiomatic
▶ Models program by the logical formulas it obeys
▶ Useful for proving program correctness

• Denotational
▶ Models program literally as mathematical objects
▶ Useful for theoretical foundations

Question: few languages have a formal semantics. Why?

13

Language Speciöcation

Formal Semantics: what do programs mean?

Three Approaches

• Operational
▶ Models program by its execution on abstract machine
▶ Useful for implementing compilers and interpreters

• Axiomatic
▶ Models program by the logical formulas it obeys
▶ Useful for proving program correctness

• Denotational
▶ Models program literally as mathematical objects
▶ Useful for theoretical foundations

Question: few languages have a formal semantics. Why?

13

Formal Semantics

Too Hard?

• Modeling a real-world language is hard
• Notation can gets very dense
• Sometimes requires developing new mathematics
• Not yet cost-effective for everyday use

Overly General?

• Explains the behavior of a program on every input
• Most programmers are content knowing the behavior of their

program on this input (or these inputs)

Okay, so who needs semantics?

14

A Tricky Example

Question #1: is the following Java program legal?

Question #2: if yes, what does it do?

..
class A { static int a = B.b + 1; }

class B { static int b = A.a + 1; }

15

Who Needs Semantics?

Unambiguous Description

• Anyone who wants to design a new feature
• Basis for most formal arguments
• Standard tool in PL research

Exhaustive Reasoning

• Sometimes have to know behavior on all inputs
• Compilers and interpreters
• Static analysis tools
• Program transformation tools
• Critical software

16

Language Design

Design Desiderata

Question: What makes a good programming language?

One answer: “a good language is one people use”

Wrong! Are COBOL and JavaScript the best languages?

Some good features:

• Simplicity (clean, orthogonal constructs)
• Readability (elegant syntax)
• Safety (guarantees that programs won’t “go wrong”)
• Support for programming in the large (modularity)
• Efficiency (good execution model and tools)

18

Design Desiderata

Question: What makes a good programming language?

One answer: “a good language is one people use”

Wrong! Are COBOL and JavaScript the best languages?

Some good features:

• Simplicity (clean, orthogonal constructs)
• Readability (elegant syntax)
• Safety (guarantees that programs won’t “go wrong”)
• Support for programming in the large (modularity)
• Efficiency (good execution model and tools)

18

Design Desiderata

Question: What makes a good programming language?

One answer: “a good language is one people use”

Wrong! Are COBOL and JavaScript the best languages?

Some good features:

• Simplicity (clean, orthogonal constructs)
• Readability (elegant syntax)
• Safety (guarantees that programs won’t “go wrong”)
• Support for programming in the large (modularity)
• Efficiency (good execution model and tools)

18

Design Desiderata

Question: What makes a good programming language?

One answer: “a good language is one people use”

Wrong! Are COBOL and JavaScript the best languages?

Some good features:

• Simplicity (clean, orthogonal constructs)
• Readability (elegant syntax)
• Safety (guarantees that programs won’t “go wrong”)
• Support for programming in the large (modularity)
• Efficiency (good execution model and tools)

18

Design Challenges

Unfortunately these goals almost always conøict.

• Types provide strong guarantees but restrict expressiveness.

• Safety checks eliminate errors but have a cost—either at
compile time or run time.

• Some veriöcation tools are so complicated, you essentially need
a PhD to use them!

A lot of research in programming languages is about discovering
ways to gain without (too much) pain.

19

Design Challenges

Unfortunately these goals almost always conøict.

• Types provide strong guarantees but restrict expressiveness.

• Safety checks eliminate errors but have a cost—either at
compile time or run time.

• Some veriöcation tools are so complicated, you essentially need
a PhD to use them!

A lot of research in programming languages is about discovering
ways to gain without (too much) pain.

19

Story: Unexpected Interactions

A real story illustrating the perils of language design

Cast of characters includes famous computer scientists

Timeline:

• 1982: ML is a functional language with type inference,
polymorphism (generics), and monomorphic references
(pointers)

• 1985: Standard ML innovates by adding polymorphic references
→ unsoundness

• 1995: The “innovation” öxed

20

ML Type System

Polymorphism: allows code to be used at different types

Examples:

• List.length : ∀α. α list → int
• List.hd : ∀α. α list → α

Type Inference: e⇝ τ

• e.g., let id (x) = x⇝ ∀α. α → α

• Generalize types not constrainted by the program
• Instantiate types at use id (true)⇝ bool

21

ML References

By default, values in ML are immutable.

But we can easily extend the language with imperative features.

Add reference types of the form τ ref

Add expressions of the form
ref e : τ ref where e : τ (allocate)
!e : τ where e : τ ref (dereference)
e1 := e2 : unit where e1 : τ ref and e2 : τ (assign)

Works as you’d expect (like pointers in C).

22

Polymorphism + References

Consider the following program

..

Code Type Analysis

let id = (fun x -> x)

id : α → α

let p = ref id p : (α → α) ref

let inc = (fun n -> n+1) inc : int → int

p := inc; OK since p : (int → int) ref

(!p) true OK since p : (bool → bool) ref

23

Polymorphism + References

Consider the following program

..

Code Type Analysis

let id = (fun x -> x)

id : α → α

let p = ref id

p : (α → α) ref

let inc = (fun n -> n+1) inc : int → int

p := inc; OK since p : (int → int) ref

(!p) true OK since p : (bool → bool) ref

23

Polymorphism + References

Consider the following program

..

Code Type Analysis

let id = (fun x -> x)

id : α → α

let p = ref id

p : (α → α) ref

let inc = (fun n -> n+1)

inc : int → int

p := inc; OK since p : (int → int) ref

(!p) true OK since p : (bool → bool) ref

23

Polymorphism + References

Consider the following program

..

Code Type Analysis

let id = (fun x -> x)

id : α → α

let p = ref id

p : (α → α) ref

let inc = (fun n -> n+1)

inc : int → int

p := inc;

OK since p : (int → int) ref

(!p) true

OK since p : (bool → bool) ref

23

Polymorphism + References

Consider the following program

..

Code Type Analysis

let id = (fun x -> x) id : α → α

let p = ref id

p : (α → α) ref

let inc = (fun n -> n+1)

inc : int → int

p := inc;

OK since p : (int → int) ref

(!p) true

OK since p : (bool → bool) ref

23

Polymorphism + References

Consider the following program

..

Code Type Analysis

let id = (fun x -> x) id : α → α

let p = ref id p : (α → α) ref

let inc = (fun n -> n+1)

inc : int → int

p := inc;

OK since p : (int → int) ref

(!p) true

OK since p : (bool → bool) ref

23

Polymorphism + References

Consider the following program

..

Code Type Analysis

let id = (fun x -> x) id : α → α

let p = ref id p : (α → α) ref

let inc = (fun n -> n+1) inc : int → int

p := inc;

OK since p : (int → int) ref

(!p) true

OK since p : (bool → bool) ref

23

Polymorphism + References

Consider the following program

..

Code Type Analysis

let id = (fun x -> x) id : α → α

let p = ref id p : (α → α) ref

let inc = (fun n -> n+1) inc : int → int

p := inc; OK since p : (int → int) ref

(!p) true OK since p : (bool → bool) ref

23

Polymorphism + References

Problem

• Type system is not sound
• Well-typed program→∗ type error!

Proposed Solutions

1. “Weak” type variables
▶ Can only be instantiated in restricted ways
▶ But type exposes functional vs. imperative
▶ Difficult to use

2. Value restriction
▶ Only generalize types of values
▶ Most ML programs already obey it
▶ Simple proof of type soundness

24

Polymorphism + References

Problem

• Type system is not sound
• Well-typed program→∗ type error!

Proposed Solutions

1. “Weak” type variables
▶ Can only be instantiated in restricted ways
▶ But type exposes functional vs. imperative
▶ Difficult to use

2. Value restriction
▶ Only generalize types of values
▶ Most ML programs already obey it
▶ Simple proof of type soundness

24

Polymorphism + References

Problem

• Type system is not sound
• Well-typed program→∗ type error!

Proposed Solutions

1. “Weak” type variables
▶ Can only be instantiated in restricted ways
▶ But type exposes functional vs. imperative
▶ Difficult to use

2. Value restriction
▶ Only generalize types of values
▶ Most ML programs already obey it
▶ Simple proof of type soundness

24

Lessons Learned

• Features often interact in unexpected ways

• The design space is huge

• Good designs are sparse and don’t happen by accident

• Simplicity is rare: n features→ n2 interactions

• Most PL researchers work with small languages (e.g., λ-calculus)
to study core issues in isolation

• But must pay attention to whole languages too

25

