
CS 4110 – Programming Languages and Logics
Lecture #31: Featherweight Java Properties and Object Encodings

In this lecture, we will develop a proof of type soundness for Featherweight Java in the usual way,
as a corollary of progress and preservation. The details of these proofs will be a little different than
the ones we have seen before, however, due to the presence of subtyping and casts. We will then
develop a different way of formalizing object-oriented languages using object encodings.

1 Properties

1.1 Preservation

The proof of preservation relies on several supporting lemmas.

Lemma (Method Typing). If mtype(m,C) = D → D and mbody(m,C) = (x, e) then there exists types
C ′ and D′ such that x : D,this : C ′ ⊢ e : D′ and D′ ≤ D.

Lemma (Substitution). If Γ, x : B ⊢ e : C and Γ ⊢ u : B′ with B′ ≤ B then there exists C ′ such that
Γ ⊢ [x 7→ u]e : C ′ and C ′ ≤ C.

Lemma (Weakening). If Γ ⊢ e : C then Γ, x : B ⊢ e : C.

Lemma (Decomposition). If Γ ⊢ E[e] : C then there exists a type B such that Γ ⊢ e : B

Lemma (Context). If Γ ⊢ E[e] : C and Γ ⊢ e : B and Γ ⊢ e′ : B′ with B′ ≤ B then there exists a type
C ′ such that Γ ⊢ E[e′] : C ′ and C ′ ≤ C.

Lemma (Preservation). If Γ ⊢ e : C and e → e′ then there exists a type C ′ such that Γ ⊢ e′ : C ′ and
C ′ ≤ C.

Proof. By induction on e → e′, with a case analysis of the last rule used in the derivation.

Case E-CONTEXT: e = E[e1] and e1 → e′1 and e′ = E[e′1]

By the decomposition lemma we have that there exists a type B such that Γ ⊢ e1 : B. By the
induction hypothesis applied to e1 we have that there exists a type B′ such that Γ ⊢ e′1 : B′

and B′ ≤ B. Then, by the context lemma we have that there exists a type C ′ such that
Γ ⊢ E[e′1] : C

′ and C ′ ≤ C, as required.
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Case E-PROJ: e = new C0(v).fi and e′ = vi with fields(C0) = C f

As the typing rules for Featherweight Java are syntax-directed, the last rule used in the
derivation of Γ ⊢ e : C must have been T-FIELD. Therefore we must also have a derivation
Γ ⊢ new C0(v) : D0 with fields(D0) = D g and C = Di. By a similar argument, the last rule
used in this derivation must have been T-NEW and so D0 = C0 and we have derivations
Γ ⊢ v : B with B ≤ D. From D0 = C0 (and as fields is a function) we have C f = D g, and
hence C = Ci. Thus, Γ ⊢ vi : Bi with Bi ≤ Ci, as required.

Case E-INVK: e = (newC0(v)).m(u) and e′ = [x 7→ u,this 7→ newC0(v)]e with mbody(m,C0) =
(x, e)

By similar reasoning as in the previous case, the last two rules in the derivation of Γ ⊢
e : C must have been T-INVK and T-NEW with Γ ⊢ new C0(v) : C0 and Γ ⊢ u : B and
mtype(m,C0) = C → C with B ≤ C. By the method typing lemma, there exist types
C ′
0 and C ′ such that x : C,this : C ′

0 ⊢ e : C ′. By the substitution lemma we have
⊢ [x 7→ u,this 7→ new C0(v)]e : C ′′ with C ′′ ≤ C ′. By weakening we have Γ ⊢ [x 7→
u,this 7→ new C0(v)]e : C

′′. The required result follows as C ′′ ≤ C by S-TRANS.

Case E-CAST: e = (C) (new C0(v)) and e′ = new C0(v) with C0 ≤ C

By similar reasoning as the previous cases, the last two rules in the derivation of Γ ⊢ e : C
must have been T-UCAST and T-NEW with Γ ⊢ new C0(v) : C0. The result is immediate as
C0 ≤ C.

1.2 Progress

The proof of progress also relies on a few supporting lemmas.

Lemma (Canonical Forms). If ⊢ v : C then v = new C(v).

Lemma (Inversion).

1. If ⊢ (new C(v)).fi : Ci then fields(C) = C f and fi ∈ f .

2. If ⊢ (new C(v)).m(u) : C then mbody(m,C) = (x, e) and |u| = |e|.

Lemma (Progress). Let e be an expression such that ⊢ e : C. Then either:

1. e is a value,

2. there exists an expression e′ such that e → e′, or

3. e = E[(B) (new A(v))] with A ̸≤ B.

Proof. By induction on ⊢ e : C, with a case analysis on the last rule used in the derivation.
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Case T-VAR: e = x with ∅(x) = C

Can’t happen, as ∅(x) is undefined.

Case T-FIELD: e = e0.f with ⊢ e0 : C0 and fields(C0) = C f and C = Ci

By the induction hypothesis applied to e0 we have that either e0 is a value, there exists e′0
such that e0 → e′0, or there exists E such that e0 = E0[(B) (new A(v))] with A ̸≤ B. We
analyze each of these subcases:

1. If e0 is a value then by the canonical forms lemma, e0 = new C0(v) and by the inversion
lemma f ∈ f . By E-PROJ we have e → vi.

2. Alternatively, if there exists an expression such that e0 → e′0 then by E-CONTEXT we
have e = E[e0] → E[e′0] where E = [·].f .

3. Otherwise, if e0 = E0[(B) (new A(v))] with A ̸≤ B then we have e = E[(B) (new A(v))]
where E = [·].f , which finishes the case.

Case T-INVK: e = e0.m(e) with ⊢ e0 : C0 and mtype(m,C0) = B → C and ⊢ e : A and A ≤ B

By the induction hypothesis applied to e0 we have that either e0 is a value, there exists e′0
such that e0 → e′0, or there exists E such that e0 = E0[(B) (new A(v))] with A ̸≤ B. We
analyze each of these subcases:

1. If e0 is a value then by the canonical forms lemma, e0 = new C0(v). If e is a list of
values u, then by the inversion lemma we have |u| = |x| where mbody(m,C0) = (x, e′0).
By E-INVK we have e → [x 7→ u,this 7→ new C0(v)]e

′
0. Otherwise, let i be the least

index of an expression in e that is not a value. By the induction hypothesis applied
to ei we have that ei is a value, or there exists e′i such that ei → e′i or there exists Ei

such that ei = Ei[(B) (new A(v))] and A ̸≤ B. In the first subsubcase, then we have a
contradiction to our assumption that i is the index of the least expression in e that is not
a value. Otherwise let E = (new C0(v)).m(e1, . . . , ei−1, Ei, ei+1, . . . |e|). In the second
subcase, we have e = E[ei] → E[e′i] by E-CONTEXT. In the third subcase, we have
e = E[(B) (new A(v))] with A ̸≤ B.

2. Alternatively, if there exists an expression such that e0 → e′0 then by E-CONTEXT we
have E[e0] → E[e′0] where E = [·].m(e).

3. Otherwise, if e0 = E0[(B) (new A(v))] with A ̸≤ B then we have e = E[(B) (new A(v))]
where E = [·].m(e), which finishes the case.

Case T-NEW: e = new C(e) and fields(C) = C f and ⊢ e : B and B ≤ C

If e is a list of values u, then e is a value. Otherwise, let i be the least index of an expression
in e that is not a value. By the induction hypothesis applied to ei we have that ei is a value,
or there exists e′i such that ei → e′i or there exists Ei such that ei = Ei[(B) (new A(v))] and
A ̸≤ B. We analyze each of these subcases:

1. If ei is a value then we have a contradiction to our assumption that i is the index of the
least expression in e that is not a value.
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2. If there exists e′i such that ei → e′i then let E = (new C(e1, . . . , ei−1, Ei, ei+1, . . . , |e|). By
E-CONTEXT we have e = E[ei] → E[e′i].

3. Otherwise, if there exists Ei with ei = Ei[(B) (new A(v))] and A ̸≤ B then let E =
(new C(e1, . . . , ei−1, Ei, ei+1, . . . , |e|). By construction we have e = E[(B) (new A(v))],
which finishes the case.

Case T-UCAST: e = (C) e with ⊢ e0 : D and D ≤ C

By the induction hypothesis applied to e0 we have that either e0 is a value, there exists e′0
such that e0 → e′0, or there exists E such that e0 = E0[(B) (new A(v))] with A ̸≤ B. We
analyze each of these subcases:

1. If e0 is a value then by the canonical forms lemma, e0 = newD(v). By E-CAST we have
e → new D(v).

2. Alternatively, if there exists an expression such that e0 → e′0 then by E-CONTEXT we
have e = E[e0] → E[e′0] where E = (C) [·].

3. Otherwise, if e0 = E0[(B) (new A(v))] with A ̸≤ B then we have e = E[(B) (new A(v))]
where E = (C) [·], which finishes the case.

Case T-DCAST: e = (C) e with ⊢ e0 : D and C ≤ D and C ̸= D

By the induction hypothesis applied to e0 we have that either e0 is a value, there exists e′0
such that e0 → e′0, or there exists E such that e0 = E0[(B) (new A(v))] with A ̸≤ B. We
analyze each of these subcases:

1. If e0 is a value then by the canonical forms lemma we have that e = new D(v). Let
E = [·]. We immediately e = E[(C) new C(v)] with D ̸≤ C.

2. Alternatively, if there exists an expression such that e0 → e′0 then by E-CONTEXT we
have e = E[e0] → E[e′0] where E = (C) [·].

3. Otherwise, if e0 = E0[(B) (new A(v))] with A ̸≤ B then we have e = E[(B) (new A(v))]
where E = (C) [·], which finishes the case.

Case T-SCAST: similar to the previous case.

2 Object Encodings

Another way to formalize the semantics of object-oriented languages is to define translations that
map them into λ-calculus. In fact, with records, fixpoints, subtyping, and recursive/existential
types, we have all of the tools needed to do this. We begin by briefly reviewing the main features
of object-oriented languages.

Dynamic dispatch Dynamic dispatch allows the code executed when a message is sent to an
object—e.g., o.m(x)—to be determined by run-time values and not (just) by compile-time infor-
mation such as types. As a result, different objects may respond to the same message in different
ways. For example, consider the following Java program:
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interface Shape { ... void draw() { ... } }
class Circle extends Shape { ... void draw() { ... } }
class Square extends Shape { ... void draw() { ... } }
...
Shape s = ...; //could be a circle a square, or something else.
s.draw();

Invoking s.draw() could run the code for any of the methods shown in the program (or for any
other class that extends Shape).

In Java, all methods (except for static methods) are dispatched dynamically. In C++, only
virtual members are dispatched dynamically. Note that dynamic dispatch is not the same as over-
loading, which is usually resolved using the static types of the arguments to the function being
called.

Encapsulation Encapsulation allows an object to hide the representations of certain internal data
structures. For example, Java programmers often keep instance variables private and write public
methods for accessing and modifying the data stored in those variables.

class Circle extends Shape {
private Point center;
private int radius;
...
public Point getX() { return center.x }
public Point getY() { return center.y }

}

the coordinates of the center of the circle can only be obtained by invoking the getX and getY
methods. The result is that all interactions with the object must be performed by invoking the
methods exposed in its public interface and not by directly manipulating its instance variables.

Subtyping Another characteristic feature of object-oriented languages is subtyping. Subtyping
fits naturally with object-oriented languages because (ignoring languages such as Java that allow
certain objects to manipulate instance variables directly) the only way to interact with an object is
to invoke a method. As a result, an object that supports the same methods as another object can
be used wherever the second is expected. For example, if we write a method that takes an object
of type Shape above as a parameter, it is safe to pass Circle, Square, or any other subtype of
Shape, because they each support the methods listed in the Shape interface.

Inheritance To avoid writing the same code twice, it is often useful to be able to reuse the defi-
nition of one kind of object to define another kind of object. In class-based languages, inheritance
is often supported through subclassing. For example, in the following Java program,

class A {
public int f(...) { ... g(...) ... }
public bool g(...) { ... }

}
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class B extends A {
public bool g(...) { ... }

}
...
new B.f(...)

B inherits the f method of its superclass A.
One way to implement inheritance is by duplicating code but this wastes space. Most lan-

guages introduce a level of indirection instead so that the code compiled for the object being
inherited from can be used directly by the object doing the inheriting.

Note that inheritance is different than subtyping: subtyping is a relation on types while inher-
itance is a relation on implementations. These two notions are conflated in some languages like
Java but kept separate in languages like C++ (which allows a “private base class”) as well as in
languages that are not based on classes.

Open recursion Finally, many object-oriented languages allow objects to invoke their own meth-
ods using the special keyword this (or self). Implementing this in the presence of inheritance
requires deferring the binding of this until the object is actually created. We will see an example
of this in the next section.

2.1 Simple Record Encoding

Let us start with a simple example, developing a representation for two-dimensional point objects
using records and references. Records provide both dynamic lookup and subtyping: given a value
v of some record type τ , the expression v.f evaluates to a value that is determined by v not by τ—
i.e., dynamic dispatch! Moreover, because the subtyping relation on record types allows extension,
code that expects an object to have type τ can be used with a value of any subtype of τ .

Here is a simple example showing how we can encode records using objects. For concrete-
ness, we use OCaml syntax rather than λ-calculus. The notation (fun x -⟩ e) denotes a λ-
abstraction.

type pointRep = { x:int ref;
y:int ref }

type point = { movex:int -> unit;
movey:int -> unit }

let pointClass : pointRep -> point =
(fun (r:pointRep) ->
{ movex = (fun d -> r.x := !(r.x) + d);
movey = (fun d -> r.y := !(r.x) + d) })

let newPoint : int -> int -> point =
(fun (x:int) ->
(fun (y:int) ->
pointClass { x=ref x; y = ref y }))

6



The pointRep type defines the representation for the object’s instance variables—a record with
a mutable reference for each field. The pointClass function takes a record with this type and
builds an object—a record with functions movex and movey, which translate the point horizon-
tally and vertically. The constructor newPoint takes two integers, x and y, and uses pointClass
to build an object whose fields are initialized to those coordinates.

2.2 Inheritance

Just as in standard object-oriented languages, we can extend our two-dimensional point with an
extra coordinate by defining a subclass that inherits the methods of its superclass.

type point3D = { movex:int -> unit;
movey:int -> unit;
movez:int -> unit }

let point3DClass : point3DRep -> point3D =
(fun (r:point3DRep) ->
let super = pointClass r in
{ movex = super.movex;
movey = super.movey;
movez = (fun d -> r.z := !(r.x) + d) } )

let newPoint3D : int -> int -> int -> point3D =
(fun (x:int) ->
(fun (y:int) ->
(fun (z:int) ->
point3DClass { x=ref x; y = ref y; z = ref z })))

The most interesting part of this program is the point3DClass function. It takes an argument
of type point3DRep and uses pointClass to build a point object super. It fills in the movex
and movey methods for the object being constructed with the corresponding fields from super—
i.e., it inherits those methods from the superclass—and defines the new method movez directly.
Note that we can pass a record of type point3DRep to pointClass because point3DRep is a
subtype of pointRep.

2.3 Self

Adding support for self is a bit trickier because we need self to be bound late. Here is an
example that illustrates one possible implementation technique:

type altPointRep = { x:int ref;
y:int ref }

type altPoint = { movex:int -> unit;
movey:int -> unit;
move: int -> int -> unit }
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let altPointClass : altPointRep -> altPoint ref -> altPoint =
(fun (r:altPointRep) ->
(fun (self:altPoint ref) ->
{ movex = (fun d -> r.x := !(r.x) + d);
movey = (fun d -> r.y := !(r.y) + d);
move = (fun dx dy -> (!self.movex) dx; (!self.movey) dy) }))

let dummyAltPoint : altPoint =
{ movex = (fun d -> ());
movey = (fun d -> ());
move = (fun dx dy -> ()) }

let newAltPoint : int -> int -> altPoint =
(fun (x:int) ->
(fun (y:int) ->
let r = { x=ref x; y = ref y } in
let cref = ref dummyAltPoint in
cref := altPointClass r cref;
!cref ))

For the sake of the example, we have added a method move that takes two integers and translates
the point both horizontally and vertically. The implementation of move invokes the movex and
movey methods from the current object—i.e., self.

To make self work as expected, we use a trick similar to the one we used to implement re-
cursive definitions in our λ-calculus interpreter. Compared to our previous object encodings there
are two key changes. First, the newAltPointClass now takes the self reference as an explicit
parameter. This parameter is filled in with the actual object when it is constructed. Second, the
newAltPoint constructor “ties the recursive knot” by allocating a reference cell for the object—
filled in initially with a dummy value—and then “back-patching” the reference with the actual
object returned by the class.

There is a small problem with this encoding of self: the self parameter to altPointClass
has type altPoint ref and references have an invariant subtyping rule. As a result, the type
system will not allow us to pass a reference to an object generated by a subclass. However, as we
do not assign to self, it would be safe to use a covariant subtyping rule. See Pierce, Chapter 18
for details on how this issue can be resolved.

2.4 Encapsulation

The simple object encoding we have developed in this section already gives us basic encapsula-
tion. After we build an object, the instance variables are totally hidden—we can only manipulate
them using object’s methods. More complicated forms of abstraction and information hiding can
be obtained using existential types. For the details of how records and existential types can be
combined to encode objects: see “Comparing Object Encodings”, by Bruce, Cardelli, and Pierce,
Information and Computation 155(1/2):108–133, 1999.
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