
CS 4110 – Programming Languages and Logics
Lectures #21: Normalization

1 Introduction

A limitation of the simply-typed lambda-calculus is that we can no longer write recursive func-
tions. Consider the nonterminating expression Ω = (λx. x x) (λx. x x). What type does it have?
Let’s suppose that the type of λx. x x is τ → τ ′. But λx. x x is applied to itself! So that means that
the type of λx. x x is the argument type τ . So we have that τ must be equal to τ → τ ′. There is no
such type for which this equality holds. (At least, not in this type system...)

This means that every well-typed program in the simply-typed lambda calculus terminates.
Formally:

Theorem (Normalization). If ⊢ e :τ then there exists a value v such that e →∗ v.

The rest of this lecture is devoted to proving this theorem.

2 Notation

For simplicity, we’ll work with the simply-typed lambda calculus over unit,

e ::= x | () | λx : τ. e | e1 e2
v ::= () | λx : τ. e
τ ::= unit | τ1 → τ2

with the standard call-by value semantics:

E ::= [·] | E e | v E

CONTEXT
e → e′

E[e] → E[e′]
β-REDUCTION

(λx. e) v → e{v/x}

3 A First Attempt

As a first attempt toward proving normalization, let us try a proof by structural induction on e. We
will need the following lemmas, all of which are standard. Each of these lemmas can be proved
by straightforward induction on the typing derivation. We leave the proofs as exercises.

Lemma (Inversion).

• If Γ ⊢ x :τ then Γ(x) = τ

• If Γ ⊢ λx : τ1. e :τ then τ = τ1 → τ2 and Γ, x : τ1 ⊢ e :τ2.

1

• If Γ ⊢ e1 e2 :τ then Γ ⊢ e1 :τ
′ → τ and Γ ⊢ e2tyτ

′.

Lemma (Canonical Forms).

• If Γ ⊢ v :unit then v = ()

• If Γ ⊢ v :τ1 → τ2 then v = λx :τ1.e and Γ, x :τ1 ⊢ e :τ2.

Now let us attempt to prove prove the main theorem.

Theorem (Normalization). If ⊢ e :τ then there exists a value v such that e →∗ v.

Proof. By structural induction on e.

Case e = x:
By inversion, we have that the empty typing context maps x to τ , which is a contradiction.
Hence, the case vacuously holds.

Case e = ():
Immediate since e is already a value.

Case e = λx : τ.e:
Immediate since e is already a value.

Case e = e1 e2:
By inversion we have ⊢ e1 : τ

′ → τ and ⊢ e2 : τ
′. Hence, by induction hypothesis there exist

v1 and v2 such that that e1 →∗ v1 and e2 →∗ v2. Moreover, by canonical forms we have that
v1 = λx : τ ′.e′. Hence, v1 v2 → e′{v2/x}.

At this point we would like to apply the induction hypothesis to e′{v2/x} to show that it
also evaluates to a value, but doing this would not be valid—the induction hypothesis only
applies to immediate subexpressions of e! Moreover, we cannot get around this by using
the other induction principles we have seen before, such as induction on the size of the
expression or on the typing derivation—these induction hypotheses do not apply to e′{v2/x}
either!

We need a different proof technique.

4 Logical Relations

To prove normalization, we will employ a technique invented by Tait in 1967 called a logical rela-
tion. The idea in a logical relation proof is to define a predicate on expressions indexed on types
that implies the property we want.

At base types this set will simply contain all expressions satisfying the property. At function
types, we will require that the property be preserved whenever we apply the function to an argu-
ment of appropriate type that also has the property.

More formally, we define the following predicate Rτ (e) inductively on τ . We use e halts as an
abbreviation for exists v such that e →∗ v.

Definition (Logical Relation).

2

• Runit(e) iff ⊢ e :unit and e halts.

• Rτ1→τ2(e) iff ⊢ e :τ1 → τ2 and e halts, and for every e′ such that Rτ1(e
′) we have Rτ2(e e

′).

Normalization then follows from the next few lemmas.
The first states the correspondence between Rτ and halting.

Lemma 1. If Rτ (e) then e halts.

The proof is straightforward as halting is built into each case of the definition of the logical
relation.

The second states that all closed well-typed expressions satisfy the predicate at their type.

Lemma 2. If ⊢ e :τ then Rτ (e)

To prove the first, we will need the following lemma:

Lemma 3. If ⊢ e :τ and e → e′ then Rτ (e) iff Rτ (e
′).

We leave the proof of this lemma as an exercise.
Returning to Lemma 2, we strengthen the induction hypothesis to allow a non-empty typing

context:

Lemma 4. If x1 :τ1 . . . xk :τk ⊢ e :τ , and v1 to vk are values such that ⊢ v1 :τ1 to ⊢ vk :τk and Rτ1(v1) to
Rτk(vk), then Rτ (e{v1/x1} . . . {vk/xk}).

Proof. By structural induction on e.

• Case e = x:
By inversion we have that x = xi and τ = τi. By definition, e{v1/x1} . . . {vk/xk} = vi. We
have Rτi(vi) by assumption.

• Case e = ():
By inversion we have that τ = unit. By definition, e{v1/x1} . . . {vk/xk} = (). We obtain
Runit(()) by the definition of the logical relation as ⊢ () :unit and () halts.

• Case e = λx :τ ′. e′:
By inversion we have τ = τ ′ → τ ′′ and x1 : τ1 . . . xk : τk, x : τ

′ ⊢ e′ : τ ′′. We immediately have
that (λx : τ ′. e′){v1/x1} . . . {vk/xk} halts since it is already a value. Let e′′ be an arbitrary ex-
pression such that Rτ ′(e

′′). By definition of the logical relation we have ⊢ e′′ :τ ′ and e′′ halts.
So there exists a v′′ such that e′′ →∗ v′′. By Lemma 3 we have that Rτ ′(v

′′). By the induction
hypothesis, we have Rτ ′′(e

′{v1/x1} . . . {vk/xk}{v′′/x}). Hence, by the definition of the oper-
ational semantics and the previous lemma again we also have Rτ ′′(e{v1/x1} . . . {vk/xk}) e′′).
Therefore by the definition of the logical relation we have Rτ ′→τ ′′(e{v1/x1} . . . {vk/xk}) as
required.

• Case e = e1 e2:
By inversion we have x1 :τ1 . . . xk :τk ⊢ e1 :τ

′ → τ ′′ and x1 :τ1 . . . xk :τk ⊢ e1 :τ
′ and τ = τ ′′. By

induction hypothesis we have Rτ ′→τ ′′(e1{v1/x1} . . . {vk/xk}) and Rτ ′(e2{v1/x1} . . . {vk/xk}).
By Lemma 1 we have that e1{v1/x1} . . . {vk/xk} halts. By the definition of the logical relation
we have Rτ ′′(e1{v1/x1} . . . {vk/xk} e2{v1/x1} . . . {vk/xk}), which is Rτ ′′((e1 e2){v1/x1} . . . {vk/xk}),
as required.

3

