
.

. .
CS 4110 – Programming Languages and Logics
Lecture #21: Propostions-as-Types, Existentials

.

Based on material by Stephen Chong, Greg Morrisett, Andrew Myers, George Necula, and Radu Rugina

1 Propositions-as-Types

There is a strong connection between types in programming languages and propositions in intu-
itionistic logic. This connection is known as the propositions-as-types correspondence or sometimes
the Curry-Howard isomorphism.

Intuitionistic logic equates the truth of a formula with its provability (where the notion of
provability is more restrictive than in classical logic, requiring constructive evidence for the truth
of the formula). That is, for a statement ϕ to be true, we must be able to find a proof of ϕ. Unlike
classical logic, the rule of excluded middle does not apply in intuitionistic logic: ϕ ∨ ¬ϕ is not
always true. It turns out that the typing rules for λ-calculus are similar to the inference rules and
axioms for proving formulas in intuitionistic logic. That is, types are like formulas, and programs
are like proofs. Consider some examples:

Products Suppose we have an expression e1 with type τ1, and expression e2 with type τ2. Think
of e1 as a proof of some logical formulas τ1, and e2 as a proof of some logical formulas τ2. What
would constitute a proof of the formulas τ1 ∧ τ2? We would need a proof of τ1 and a proof of τ2.
Say we put these proofs together in a pair: (e1, e2). This is a program with type τ1 × τ2. That is,
the product type τ1 × τ2 corresponds to conjunction!

Sums Similarly, how would we prove τ1 ∨ τ2? Under intuitionistic logic, we need either a proof
of τ1, or a proof of τ2. Thinking about programs and types, this means we need either an expression
of type τ1 or an expression of type τ2. We have a construct that meets this description: the sum
type τ1 + τ2 corresponds to disjunction!

Functions What does the function type τ1 → τ2 correspond to? We can think of a function of
type τ1 → τ2 as taking an expression of type τ1 and producing something of type τ2, which by
the Curry-Howard isomorphism, means taking a proof of proposition τ1 and producing a proof
of proposition τ2.

Universal Types The polymorphic lambda calculus introduced universal quantification over
types: ∀X. τ . As the notation suggests, this corresponds to universal quantification in intuitionistic
logic. To prove formula ∀X. τ , we would need a way to prove τ{τ ′/X} for all propositions τ ′.
This is what the expression ΛX. e gives us: for any type τ ′, the type of the expression (ΛX. e) [τ ′]
is τ{τ ′/X}, where τ is the type of e.

So under the Curry-Howard isomorphism, an expression e of type τ is a proof of proposition
τ . If we have a proposition τ that is not true, then there is no proof for τ , i.e., there is no expression
e of type τ . A type that has no expressions with that type is called an uninhabited type. There are

1

many uninhabited types, such as ∀X. X . Uninhabited types correspond to formulas that do not
have a proof. Inhabited types are theorems.

1.1 Examples

Consider the formula

∀ϕ1, ϕ2, ϕ3. ((ϕ1 ⇒ ϕ2) ∧ (ϕ2 ⇒ ϕ3)) ⇒ (ϕ1 ⇒ ϕ3).

The type corresponding to this formula is

∀X,Y, Z. ((X → Y) × (Y → Z)) → (X → Z).

This formula is a tautology. So there is a proof of the formula. By the Curry-Howard isomorphism,
there should be an expression with the type ∀X,Y, Z. ((X → Y)× (Y → Z)) → (X → Z). Indeed,
the following is an expression with the appropriate type.

ΛX,Y, Z. λf : (X → Y) × (Y → Z). λx :X. (#2 f) ((#1 f) x)

Now consider the higher-order function that, given a function of type (τ1 × τ2) → τ3, produces
a function of type τ1 → τ2 → τ3. This function, often called curry,

λf : (τ1 × τ2) → τ3. λx :τ1. λy :τ2. f (x, y),

has type
((τ1 × τ2) → τ3) → (τ1 → τ2 → τ3).

The corresponding logical formula is (ϕ1 ∧ ϕ2 ⇒ ϕ3) → (ϕ1 ⇒ (ϕ2 ⇒ ϕ3)), which is a tautology.

2 Modules

Some simple languages such as C and FORTRAN, have a single global namespace. This often
causes problems because in large programs, name collisions—i.e., two different programmers (or
pieces of code) using the same name for different purposes—are likely. Also, components of a
program may be more tightly coupled, since two components are coupled simply by one using a
name defined by the other.

Modular programming addresses these issues. A module is a collection of named entities that are
related to each other in some way. Modules provide separate namespaces: different modules have
different name spaces, and so can freely use names without worrying about name collisions.

Typically, a module can choose what names/entities to export (i.e., which names to allow to
be used outside of the module), and what to keep hidden. The exported entities are declared in an
interface, and the interface typically does not export details of the implementation. This means that
different modules can implement the same interface in different ways. Also, by hiding the details
of module implementation, and preventing access to these details except through the exported
interface, programmers of modules can be confident that code invariants are not broken.

Packages in Java are a form of modules. A package provides a separate namespace (we can
have a class called Foo in package p1 and package p2 without any conflicts). A package can hide
details of its implementation by using private and package-level visibility.

2

How do we access the names exported by a module? Given a module m that exports an entity
names x, common syntax for accessing x is m.x. Many languages also provide a mechanism to
use all exported names of a module using shorter notation—e.g., “Open m”, or “import m”, or
“using m”.

3 Existential types

In this section, we will extend the simply-typed lambda calculus with existential types (and records).
An existential type is written ∃X. τ , where type variable X may occur in τ . If a value has type
∃X. τ , it means that it is a pair {τ ′, v} of a type τ ′ and a value v, such that v has type τ{τ ′/X} .

Thinking about the Curry-Howard isomorphism may provide some intuition for existential
types. As the notation and name suggest, the logical formula that corresponds to an existential
type ∃X. τ is an existential formula ∃X. ϕ, where X may occur in ϕ. In intuitionistic logic, what
would it mean for the formula “there exists some X such that ϕ is true” to be true? Recall that a
formula is true only if there is a proof for it. To prove “there exists some X such that ϕ is true” we
must actually provide a witness ψ, an entity that is a suitable replacement for X , and also, a proof
that ϕ is true when we replace X with witness ψ.

A value {τ ′, v} of type ∃X. τ exactly corresponds to a proof of an existential statement: type τ ′

is the witness type, and v is a value with type τ{τ ′/X}.
We introduce a language construct to create existential values, and a construct to use existential

values. The syntax of the new language is given by the following grammar.

e ::= x | λx :τ. e | e1 e2 | n | e1 + e2

| { l1 = e1, . . . , ln = en } | e.l
| pack {τ1, e} as ∃X. τ2 | unpack {X,x} = e1 in e2

v ::= n | λx :τ. e | { l1 = v1, . . . , ln = vn } | pack {τ1, v} as ∃X. τ2
τ ::= int | τ1 → τ2 | { l1 :τ1, . . . , ln :τn } | ∃X. τ

Note that in this grammar, we annotate existential values with their existential type. The con-
struct to create an existential value, pack {τ1, e} as ∃X. τ2, is often called packing, and the construct
to use an existential value is called unpacking. Before we present the operational semantics and
typing rules, let’s see an example to get an intuition for packing and unpacking.

Here we create an existential value that implements a counter, without revealing details of its
implementation.

let counterADT =
pack {int, { new = 0,get = λi : int. i, inc = λi : int. i+ 1 } }
as ∃Counter. { new : Counter,get : Counter → int, inc : Counter → Counter }

in . . .

The abstract type name is Counter, and its concrete representation is int. The type of the variable
counterADT is ∃Counter. { new : Counter,get : Counter → int, inc : Counter → Counter }. We

3

can use the existential value counterADT as follows.

unpack {C, c} = counterADT in
let y = c.new in
c.get (c.inc (c.inc y))

Note that we annotate the pack construct with the existential type. That is, we explicitly state the
type

∃Counter. {new :Counter,get :Counter → int, inc :Counter → Counter}.

Why do we do this? Without this annotation, we would not know which occurrences of the wit-
ness type are intended to be replaced with the type variable, and which are intended to be left as
the witness type. In the counter example above, the type of expressions λi : int. i and λi : int. i + 1
are both int → int, but one is the implementation of get, of type Counter → int and the other is
the implementation of inc, of type Counter → Counter.

We now define the operational semantics for existentials. We add two new evaluation contexts,
and one evaluation rule for unpacking an existential value.

E ::= · · · | pack {τ1, E} as ∃X. τ2 | unpack {X,x} = E in e

unpack {X,x} = (pack {τ1, v} as ∃Y. τ2) in e→ e{v/x}{τ1/X}

The typing rules ensure that existential values are used correctly.

∆,Γ ⊢ e :τ2{τ1/X} ∆ ⊢ ∃X. τ2 ok
∆,Γ ⊢ pack {τ1, e} as ∃X. τ2 :∃X. τ2

∆,Γ ⊢ e1 :∃X. τ1 ∆ ∪ {X},Γ, x :τ1 ⊢ e2 :τ2 ∆ ⊢ τ2 ok
∆,Γ ⊢ unpack {X,x} = e1 in e2 :τ2

Note that in the typing rule for unpack, the side condition ∆ ⊢ τ2 ok ensures that the existentially
quantified type variable X does not appear free in τ2. This rules out programs such as,

let m =
pack {int, {a = 5, f = λx : int.x+ 1}} as ∃X. {a :X, f :X → X}

in
unpack {X,x} = m in x.f x.a

where the type of (f.x x.a) has X free.

4

