
Project 4
Multi-Core Network Honeypot



LL/SC

- Important for mutex locking/unlocking

- Crucial for synchronized data-structures

- Up to 32 cores in PA4



LL/SC Syntax

● LL a, off(b): loads M[b + off] into register a

● SC c, off(d): 

○ Attempts to store the value of c into M[d + off]. 

○ If M[d + off] has changed since the last LL instruction 

then c = 0 and M[d + off] stays the same.

○ Otherwise M[d + off] = c and c = 1



High Level Overview

You are to design a network honeypot: 

• receives packets from a network device

• analyzes and classifies those packets

• tracks various statistics over time

Your honeypot will be simulated on a multi-core MIPS and 

simulated I/O devices.



Project Goal

- Bundles of data = “packet”

- Max size of packet is 4kB

- Receive packets as fast as possible (maximize 

throughput)

- Analyze all packets and gather statistics



Important Files

After you have read through most of the code that we give 

you, your focus should be on:

- kernel.h/c

- network.h/c

If you feel overwhelmed, don’t worry: you will not have to 

touch most of the other files.



Packets

Three categories:

- Vulnerable, spammer, evil

- Command

- Print

Detailed descriptions of each packet category is on the 

main project page.



Interrupts

- One of the two main ways to handle packet reception.

- Interrupt occurs when packet arrives

- Simple implementation (may or may not be easier than 

polling)

- Slow and will result in poor performance during network 

spikes



Polling

- This is the second way to receive packets

- Checks continuously if a packet arrived in the “packet 

ring” (explained later)

- Needs a core on polling duty

- Very fast and not a bottleneck if implemented correctly



Packet Ring

● Array of 16 (address, length) tuples in memory

● Has a “head” and “tail” (essentially a ringbuffer)

● When packet arrives,

○ it will be written to paddr in the tuple under the head

○ head moves to the next tuple

● Make sure the memory where the packet arrives is 

allocated



Packet Ring (continued)

Memory

(paddr, len)

head

Packet Ring



DGB2 Hashing

- Same as for your hashtable

- Takes in a pointer to a sequence of bytes

- Returns an unsigned long

- You need to use this function on every packet



DGB2 (continued)

- Very time consuming

- Is the bottleneck in functioning systems

- Hard code some of it

- Unroll some of the loops (see FAQ)

- In sum: optimize it as much as you can



Milestones

- Start the project (seriously this time, start this early…we 

are not joking, and there are no slip days)

- Turn on simulated network card and receive/drop 

packets

- Prepare Design Doc meeting

- Receive first 17 packets without dropping

- Handle one of each type of packets



Milestones (continued)

- Implement and synchronize shared data-structures

- Synchronize malloc / find a way around it

- Print out statistics

- Parallelize analysis of packets

- Optimize until due date



Expectations

- The measure of how good your final project is 

throughput

(bits worth of packets you can analyse per unit time)

- You need to be dropping very few packets

- Aim for 10 Mb/s (don’t panic with lower throughput)

- Highest ever is 70 Mb/s

- That all said, correctness is most important!



Due Dates

• Schedule Design Doc meeting - May 2nd

• Design Documentation - May 6th

• Schedule Final Presentation - May 9th

• Final Presentations/Demos - May 12-13th

• Final Code Submission - May 13th



Suggestions

1. We cannot emphasize this enough; get started early: 

there will be fewer people in office hours further away 

from the deadline.

2. Keep your code clean: your codebase will be 

significantly larger than any other project for this class. 

Make sure you can read through it.

3. Version control: this should be a reflex by now, there is 

no reason not to do it. Keep it private (e.g: bitbucket).



Suggestions

- Take some time to set up your environment. It’s 

important to be comfortable editing your codebase.

- We can help!


