What does the Future Hold?

Prof. Hakim Weatherspoon
CS 3410, Spring 2015
Computer Science
Cornell University

Announcements

Final Project
Demo Sign-Up via CMS.

> sign up Tuesday, May $12^{\text {th }}$ or Wednesday, May $13^{\text {th }}$

CMS submission due:

- Due 6:30pm Wednesday, May $13^{\text {th }}$

Announcements

Prelim2 Results

- Mean 61.5 ± 17.3 (median 62), Max 95.5
- Pickup in Homework Passback Room (216 Gates)

Announcements

Prelim2 Results

Virtual Memory
34-bit $=48$-bit -14 bit Physical Memory

Announcements

 Prelim2 Results

34-bit $=48$-bit -14 bit Physical Memory

Announcements

Prelim2 Results

Virtual Memory

Physical Memory

Announcements

Multi-level PageTable

Announcements

Multi-level PageTable

Announcements

How to improve your grade?

Submit a course evaluation and drop lowest inclass lab score

- To receive credit, Submit before Monday, May $11^{\text {th }}$

Announcements Lord of the Cache Games Night was great!

Announcements

Lord of the Cache Games Night was great!

- Winner: Team xyzzy

Andrew Matsumoto and lan Leeming

Announcements

Lord of the Cache Games Night was great!

- Winner: Team xyzzy

Andrew Matsumoto and lan Leeming

Announcements

 Lord of the Cache Games Night was great!- Champion of Champions: 2015 vs 2011 xyzzy (2015) vs hakimPeterspoon (2011)

Big Picture about the Future

"Sometimes it is the people that no one imagines anything of

 who do the things that no one can imagine"
--quote from the movie The Imitation Game

"Can machines think?"

-- Alan Turing, 1950 Computing Machinery and Intelligence

Enigma machine

Used by the Germans during World War II to encrypt and exchange secret messages

The Bombe used by the Allies to break the German Enigma machine during World War II

Turing Machine
1936
Alan Turing

Big Picture

How a processor works? How a computer is organized?

What's next?

More of Moore

Moore's Law

Moore's Law introduced in 1965

- Number of transistors that can be integrated on a single die would double every 18 to 24 months (i.e., grow exponentially with time).
Amazingly visionary
- 2300 transistors, 1 MHz clock (Intel 4004) - 1971
- 16 Million transistors (Ultra Sparc III)
- 42 Million transistors, 2 GHz clock (Intel Xeon) - 2001
- 55 Million transistors, $3 \mathrm{GHz}, 130 \mathrm{~nm}$ technology, 250mm2 die (Intel Pentium 4) - 2004
- 290+ Million transistors, 3 GHz (Intel Core 2 Duo) - 2007
- 731 Million transistors, 2-3Ghz (Intel Nehalem) - 2009
- 1.4 Billion transistors, 2-3Ghz (Intel Ivy Bridge) - 2012

Why Multicore?

Moore's law

- A law about transistors
- Smaller means more transistors per die
- And smaller means faster too

But: Power consumption growing too...

What to do with all these transistors?

Multi-core

Multi-core

http://www.theregister.co.uk/2010/02/03/intel_westmere_ep_preview/

- An Intel Westmere
- 1.17 billion transistors
- 240 square millimeters
- 32 nanometer: transistor gate width
- Bardeen, Brattain, and Shockley - Six processing cores
- Release date: January 2010

Multi-core

http://forwardthinking.pcmag.com/none/296972-intel-releases-ivy-bridge-first-processor-with-tri-gate-transistor

The first transistor

- on a workbench at AT\&T Bell Labs in 1947
- Bardeen, Brattain, and Shockley - Up to eight processing cores
- Release date: April 2012

What to do with all these transistors?

Cloud Computing

Cloud Computing

The promise of the Cloud

- ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction.

nirvanix" cocrala

Cloud Computing

The promise of the Cloud

- ubiquitous, convenient, on-demand networkaccess to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction.

ràckspacecloud

Windows'Azure

Cloud Computing

The promise of the Cloud

- ubiquitous, convenient, on-demand networkaccess to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction. NIST Cloud Definition

Requires fundamentals in systems

- Computation
- Networking
- Storage

Cloud Computing

Large organizations considering using the cloud

- New York Times
- Netflix
- Nintendo
- Cornell
- Library of Congress

The more data you have, the harder it is to move

- Switching providers entails paying for bandwidth twice
- Inhibits opportunistic migration

Cloud Computing

How hard is to program with a ExaByte of data?

Titan tech boom, randy katz, 2008

Cloud Computing

Datacenters are becoming a commodity Order online and have it delivered

- Datacenter in a box: already set up with commodity hardware \& software (Intel, Linux, petabyte of storage)
- Plug data, power \& cooling and turn o
- typically connected via optical fiber

such datacenters

Cloud Computing = Network of Datacenters

Cloud Computing

- How to optimize a global network of data centers?

Cloud Computing = Network of Datacenters

Cloud Computing

Vision
The promise of the Cloud

- A computer utility; a commodity
- Catalyst for technology economy
- Revolutionizing for health care, financial systems, scientific research, and society

However, cloud platforms today

- Entail significant risk: vendor lock-in vs control
- Entail inefficient processes: energy vs performance
- Entail poor communication: fiber optics vs COTS endpoin

Example: Energy and Performance

Why don't we save more energy in the cloud?

No one deletes data anymore!

- Huge amounts of seldom-accessed data

Data deluge

- Google (YouTube, Picasa, Gmail, Docs), Facebook, Flickr
- 100 GB per second is faster than hard disk capacity growth!
- Max amount of data accessible at one time << Total data

New scalable approach needed to store this data

- Energy footprint proportional to number of HDDs is not sustainable

What to do with all these transistors?

Embedded Processors

Where is the Market?

Whern tn?

Security?

Cryptography and security...

 TPM 1.2IBM 4758
Secure Cryptoprocessor

Security?

Stack Smashing...

Before	After
buffer[1024]	"Success ; ${ }^{\text {c }}$
	nothing meaningful here
ret address of CalcAverage()	address of printf
rest of the stack	return address of main()
	address of buffer[0]
	rest of the stack

What's next?

Moore's Law

Moore's Law introduced in 1965

- Number of transistors that can be integrated on a single die would double every 18 to 24 months (i.e., grow exponentially with time)

Amazingly visionary

- 2300 transistors, 1 MHz clock (Intel 4004) - 1971
- 16 Million transistors (Ultra Sparc III)
- 42 Million transistors, 2 GHz clock (Intel Xeon) - 2001
- 55 Million transistors, $3 \mathrm{GHz}, 130 \mathrm{~nm}$ technology, 250mm2 die (Intel Pentium 4) - 2004
- 290+ Million transistors, 3 GHz (Intel Core 2 Duo) - 2007
- 731 Million transistors, 2-3Ghz (Intel Nehalem) - 2009
- 1.4 Billion transistors, 2-3Ghz (Intel Ivy Bridge) - 2012

Moore's Law

Parallelism

Dennard scaling: power

Must exploit parallelism for performance

MIMD: multiple instruction, multiple data

- Multicore

SIMD: single instruction, multiple data

- GPUs

My slide from 2008

Do you believe?

- Kavita Bala 2008 Computer Sctence, Cornell Universty

Is Moore's law dead?

Some thoughts

Bob Colwell
Chief Architect Pentium
DARPA

Introduction
Bill Dally, Nvidia CTO

Talk
The Chip Design Game at the End of Moore's Law Hot Chips, Aug 2013

Singularity

Approximate Computing

Better interfaces

Brain interfaces

Specialized chips
Make it programmable

More

Supercomputers

Petaflops: GPUs/multicore/100s-1000s cores

WORLD'S FIRST ARM-BASED SUPERCOMPUTERTR LAUNCH IN BA
 by sumir cuertacn wov 42 za foftware, stpercompution I Comwert

Printer-friendly version

NVIDIA Tesla GPUs Power World's Fastest Supercomputer Half the size, Lower Power and 50% Faster Than Worlds Top Supercomputer

The Barcelona Supercomputing Center (BSC) - Spain's national supercomputin news today in the supercomputing world, by announcing plans to build the w ARM-based supercomputer.

BSC is planning to build the first AQM supercomputer, accelerated by CUDA G scientific research. This prototype system will use NVIDIA's quad-core ARM-bi on-a-chip, along with NVIDU CUDA GPUs on a hardware board desligned by $5 E$ variety of scientific research projects.

In their search for more energy efficient architectures in supercomputers, BSC concluded that typical xB6-based CPUs in today's supercomputers consume up to 40 percent of the system's total power. They've also realized that ARM CPUs are much more energy-efficient than $\times 86$ CPUs from intel and AMD.

CUDA 5 sytem uses 7,168 NVIDLAA Tesla ${ }^{*}$ M2050 GPUs and 14,336 CPUs; it would require more than 50,000 CPUs and twice as much floor space to deliver the same performance using CPUs alone.

The Tanter 14 Sipercomputer, locited at fational Eeperthmputer Cocter, Tiandian

More importantly, a 2.507 petaflop system built
entirely with CPUs would consume more than 12 megawatts. Thanks to the use of GPUs in a heterogeneous computing environment, Tianhe-1A consumes only 4.04 megawatts, making it 3 times more power efficient - the difference in power consumption is enough to provide electricity to over 5000 homes for a year.

dapan and the rest of the world are faced with various problems that are hard to solve. The challenge for us fa tackle is how to solve these iesues promply withoul further delay. To do this, we need to gather wisdom from around the world and acoelerate our cutting-edge research in a variety of felds. Supercomputers will be crucial in achieving the eie goals. Fujtiu is thiving to enable a prosperous future for the Earth and its peoples through the development of suparcomputers.

One Fuitsuaim is to complete the develogment of the K computer by 2012 together with RIKEN, in acourdance with the High

Petaflops

Tianhe-2 is the fastest computer in the world! It is a 33.86 petaflop supercomputer

GPUs for Scientific Computing

Financial simulation Oxford

Molecular Dynamics U of Illinois

Linear Algebra Universidad Jaime

Video Transcoding Elemental Tech

3D Ultrasound Techniscan

Matlab Computing AccelerEyes

Astrophysics RIKEN

GPUs for Neural Nets

Machine Learning using Deep Neural Networks

Input

Result

GPUs for Graphics, of course

What to do with all these transistors?

You could save the world one day?

Alan Turing's Bombe Used to crack Germany's enigma machine

ENIAC - 1946

First general purpose electronic computer. Designed to calculate ballistic trajectories

Smart Dust

\& Sensor Networks

Where to?

CS 3110: Better concurrent programming

CS 4410/4411: The Operating System!

CS 4420/ECE 4750: Computer Architecture
CS 4450: Networking
CS 4620: Graphics
MEng
5412-Cloud Computing, 5414—Distr Computing
5430-Systems Secuirty, 5413 - high perf systems and netowrking
5300-Arch of Larg scale Info Systems
6644 - Modeling the world
And many more...

Why?

Your job as a computer scientist will require knowledge the computer
Research/University

Cornell University

Faculty of Computing and Information Science
Industry

Government

Thank you!

If you want to make an apple pie from scratch, you must first create the universe.

- Carl Sagan

