Caches 3

Prof. Hakim Weatherspoon
CS 3410, Spring 2015
Computer Science
Cornell University

See P&H Chapter: 5.1-5.4, 5.8, 5.10, 5.15; Also, 5.13 & 5.17

Overview

Writing to caches: policies, performance

Cache tradeoffs and performance

What about Stores?

Where should you write the result of a store?

* If that memory location is in the cache?
— Send it to the cache
— Should we also send it to memory right away?
(write-through policy)
— Wait until we evict the block (write-back policy)
e Ifitis notin the cache?

— Allocate the line (put it in the cache)?
(write allocate policy)

— Write it directly to memory without allocation?
(no write allocate policy)

Cache Write Policies

Q: How to write data?

Clelely Cache
pU i i Memory
? SRAM — DRAM
ata

If data is already in the cache...
No-Write
writes invalidate the cache and go directly to memory

Write-Through

writes go to main memory and cache

Write-Back

CPU writes only to cache
cache writes to main memory later (when block is evicted)

Write Allocation Policies

Q: How to write data?

Clelely Cache
pU i i Memory
? SRAM — DRAM
ata

If data is not in the cache...
Write-Allocate

allocate a cache line for new data (and maybe write-through)
No-Write-Allocate

ignore cache, just go to main memory

Next Goal

How does a write-through cache work?

Assume write-allocate

Handling Stores (Write-Through)

Using byte addresses in this example! Addr Bus =5 bits

Processor

Assume write-allocate
policy

Cach
Fully Assocﬁative Cache
2 cache lines
2 word block

4 bit tag field
1 bit block offset field

V tag data

0

Misses: 0

Hits: 0

Memory
0 78
1 29
p
3
4
5
6
7
8
)
10
11
12
13| 200
14

[T
Ul

Write-Through (REF 1)

Processor

Cache

V tag data

0

Misses: 0

Hits:

0

Memory

OO NOOUIS WNERO

= =
= O

=
N

=
w

200

=
Vi b

How Many Memory References?

Write-through performance

Each miss (read or write) reads a block from mem
Each store writes an item to mem

Evictions don’t need to write to mem

Summary: Write Through

Write-through policy with write allocate
Cache miss: read entire block from memory
Write: write only updated item to memory

Eviction: no need to write to memory

Write-Through vs. Write-Back

Can we also design the cache NOT to write all
stores immediately to memory?

e Keep the most current copy in cache, and update
memory when that data is evicted (write-back
policy)

Do we need to write-back all evicted lines?

— No, only blocks that have been stored into (written)

Write-Back Meta-Data

V. D Tag Byte 1 Byte 2 ... Byte N

V = 1 means the line has valid data
D = 1 means the bytes are newer than main memory
When allocating line:
e SetV=1,D=0,fillin Tag and Data
When writing line:
e SetD=1
When evicting line:
e IfD=0:justsetV=0
e |f D=1:write-back Data, thensetD=0,V=0

Write-back Example

Example: How does a write-back cache work?

Assume write-allocate

Handling Stores (Write-Back)

Using byte addresses in this example! Addr Bus =5 bits

Processor

Assume write-allocate
policy

Cache

Fully Associative Cache

2 cache lines
2 word block

3 bit tag field

1 bit block offset field

V d tag

data

0

Misses:

Hits:

0
0

Memory
0 78
1 29
p
3
4
5
6
7
8
)
10
11
12
13| 200

=
Vi b

Write-Back (REF 1)

Processor Cache Memory
0
1
2
3
) 1B $1M[1] Vd tag data a
LB $2« M[7] 0 5
SB $2—>M[0] e
SBS1>M[5]
LB $2 < M[10] 0 7
SBS1>M[5] 8
SB $1—> M[10] 9
10
SO 11
s1 Misses: 0O 12
$2 13| 200
$3 Hits: (0] 14
15

How Many Memory References?

Write-back performance

Each miss (read or write) reads a block from mem

Some evictions write a block to mem

So is write back just better?

What are other performance tradeoffs between
write-through and write-back?

How can we further reduce penalty for cost of
writes to memory?

Performance: An Example

Performance: Write-back versus Write-through

Assume: large associative cache, 16-byte lines
for (i=1; i<n; i++)
Afo] += A[1i];

for (i=0; i<n; i++)
B[i] = A[i]

Performance Tradeoffs

Q: Hit time: write-through vs. write-back?

Q: Miss penalty: write-through vs. write-back?

Write Buffering

Q: Writes to main memory are slow!

Q: When does it help?

Write-through vs. Write-back

Write-through is slower
e But simpler (memory always consistent)

Write-back is almost always faster
* write-back buffer hides large eviction cost

e But what about multiple cores with separate caches
but sharing memory?

Write-back requires a cache coherency protocol
* |Inconsistent views of memory
* Need to “snoop” in each other’s caches
e Extremely complex protocols, very hard to get right

Cache-coherency

Q: Multiple readers and writers?

A: Potentially inconsistent views of memory

Weru || cpu || cpu || cpu

paflee| e feaffea | fLeffra

AR 12
Mem

net | A

Cache coherency protocol

e May need to snoop on other CPU’s cache activity
 |nvalidate cache line when other CPU writes
* Flush write-back caches before other CPU reads

e Orthe reverse: Before writing/reading...

 Extremely complex protocols, very hard to get right

Summary: Write Through

Write-through policy with write allocate
e (Cache miss: read entire block from memory
e Write: write only updated item to memory
e Eviction: no need to write to memory

Write-back policy with write allocate
e (Cache miss: read entire block from memory
— But may need to write dirty cacheline first
e Write: nothing to memory

e Eviction: have to write to memory, entire cacheline
because don’t know what is dirty (only 1 dirty bit)

Next Goal

Performance: What is the average memory access
time (AMAT) for a cache?

AMAT = %hit x hit time + % miss x miss time

Cache Performance Example

Average Memory Access Time (AMAT)

Cache Performance (very simplified):
L1 (SRAM): 512 x 64 byte cache lines, direct mapped
Data cost: 3 cycle per word access

Lookup cost: 2 cycle 16 words (i.e. 64 / 4 = 16)
Mem (DRAM): 4GB

Data cost: 50 cycle for first word, plus 3 cycles per
subsequent word

Cache Performance Example

Average Memory Access Time (AMAT)

Cache Performance (very simplified):
L1 (SRAM): 512 x 64 byte cache lines, direct mapped
Data cost: 3 cycle per word access

Lookup cost: 2 cycle 16 words (i.e. 64 / 4 = 16)
Mem (DRAM): 4GB

Data cost: 50 cycle for first word, plus 3 cycles per
subsequent word

Multi Level Caching

Cache Performance (very simplified):
L1 (SRAM): 512 x 64 byte cache lines, direct mapped
Hit time: 5 cycles
L2 cache: bigger
Hit time = 20 cycles
Mem (DRAM): 4GB
Hit rate: 90% in L1, 90% in L2

Often: L1 fast and direct mapped, L2 bigger and higher
associativity

Performance Summary

Average memory access time (AMAT)
depends on cache architecture and size
access time for hit,

miss penalty, miss rate

Cache design a very complex problem:
e Cache size, block size (aka line size)
 Number of ways of set-associativity (1, N, oo)
e Eviction policy
e Number of levels of caching, parameters for each
e Separate |I-cache from D-cache, or Unified cache
e Prefetching policies / instructions
* Write policy

Cache Conscious Programming

// H =12, W = 10
int A[H][W];

for(x=0; x < W; Xx++)
for(y=0; y < H; y++)
sum += A[y][x];

Cache Conscious Programming

// H=12, W = 10
int A[H][W];

for(y=0; y < H; y++)
for(x=0; x < W; X++)

sum += A[y][x];

> dmidecode -t cache
Cache Information A Real Exa m ple

Configuration: Enabled, Not Socketed, Level 1
Operational Mode: Write Back
Installed Size: 128 KB
Error Correction Type: None
Cache Information
Configuration: Enabled, Not Socketed, Level 2
Operational Mode: Varies With Memory Address
Installed Size: 6144 KB
Error Correction Type: Single-bit ECC
> c¢d /sys/devices/system/cpu/cpu@; grep cache/*/*
cache/index0/level:1
cache/index@/type:Data
cache/index@/ways of associativity:8
cache/index@/number of sets:64
cache/index@/coherency line size:64
cache/index0/size:32K
cache/index1/level:1
cache/indexl/type:Instruction
cache/indexl/ways of associativity:8
cache/indexl/number_of sets:64
cache/indexl/coherency line size:64
cache/index1/size: 32K
cache/index2/level:2
cache/index2/type:Unified
cache/index2/shared cpu list:0-1
cache/index2/ways_of_associativity:24
cache/index2/number of sets:4096
cache/index2/coherency line size:64
cache/index2/size:6144K

Dual-core 3.16GHz Intel
(purchased in 2011)

A Real Example
Dual-core 3.16GHz Intel

Dual 32K L1 Instruction caches (purchased in 2009)
e 8-way set associative
* 64 sets
* 64 byte line size

Dual 32K L1 Data caches
e Same as above

Single 6M L2 Unified cache
e 24-way set associative (!!!)
* 4096 sets
* 64 byte line size

4GB Main memory

1TB Disk

v

Core Core Core Core Core Core Core Core
L(0) 1.5K L(0) 1.5K L(0) 1.5K L(0) 1.5K L(0) 1.5K L(0) 1.5K L(0) 1.5K L(0) 1.5K

uops uops uops uops uops uops uops uops
o O o 2 o 9 o0 o8 o0 e e
< Xl 2 R31x Sz 5123258 2g s
m O w 2w 2 e 2f &8 28 2 of 5 2
= ol = &= &= 2|l = 2a|l=1290]l= o= 2
S Sl 2 22 2|2 22 2|9 Sl d)5
L(2) L(2) L(2) L(2) L(2) L(2) L(2) L(2)
256 KB 256 KB 256 KB 256 KB 256 KB 256 KB 256 KB 256 KB

_ 20 MB Last Level (LLC) Cache or L3 Cache Ring
Ring Station
System Integrated Quick Path
Agent I/O Controller Memory Interconnect
Controller (QPI) Agent

~ = =

2PCle3 x16 Four DDR3 Each link 16 GB/s in
DMi2 1 PCle3 x8 channels 51.2 GB/s each direction
Figure 1. Schematic diagram of a Sandy Bridge processor.

Summary

Memory performance matters!
e often more than CPU performance
e ... because itis the bottleneck, and not improving much
* ... because most programs move a LOT of data
Design space is huge
 Gambling against program behavior

e Cuts across all layers:
users > programs = os =2 hardware

Multi-core / Multi-Processor is complicated
* |Inconsistent views of memory
e Extremely complex protocols, very hard to get right

	Caches 3
	Overview
	What about Stores?
	Cache Write Policies
	Write Allocation Policies
	Next Goal
	Handling Stores (Write-Through)
	Write-Through (REF 1)
	How Many Memory References?
	Summary: Write Through
	Write-Through vs. Write-Back
	Write-Back Meta-Data
	Write-back Example
	Handling Stores (Write-Back)
	Write-Back (REF 1)
	How Many Memory References?
	So is write back just better?
	Performance: An Example
	Performance Tradeoffs
	Write Buffering
	Write-through vs. Write-back
	Cache-coherency
	Slide Number 23
	Next Goal
	Cache Performance Example
	Cache Performance Example
	Multi Level Caching
	Performance Summary
	Cache Conscious Programming
	Cache Conscious Programming
	A Real Example
	A Real Example
	Slide Number 33
	Summary

