
Prof. Hakim Weatherspoon
CS 3410, Spring 2015

Computer Science
Cornell University

See P&H Chapter: 5.1-5.4, 5.8, 5.10, 5.15; Also, 5.13 & 5.17

Writing to caches: policies, performance

Cache tradeoffs and performance

Where should you write the result of a store?
• If that memory location is in the cache?

– Send it to the cache
– Should we also send it to memory right away?
(write-through policy)
– Wait until we evict the block (write-back policy)

• If it is not in the cache?
– Allocate the line (put it in the cache)?
(write allocate policy)
– Write it directly to memory without allocation?
(no write allocate policy)

Q: How to write data?

CPU
Cache

SRAM
Memory

DRAM

addr

data

If data is already in the cache…
No-Write

writes invalidate the cache and go directly to memory

Write-Through
writes go to main memory and cache

Write-Back
CPU writes only to cache
cache writes to main memory later (when block is evicted)

Q: How to write data?

CPU
Cache

SRAM
Memory

DRAM

addr

data

If data is not in the cache…
Write-Allocate

allocate a cache line for new data (and maybe write-through)

No-Write-Allocate
ignore cache, just go to main memory

How does a write-through cache work?
Assume write-allocate

29

123

150
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

LB $1 ← M[1]
LB $2 ← M[7]
SB $2 → M[0]
SB $1 → M[5]
LB $2 ← M[10]
SB $1 → M[5]
SB $1 → M[10]

CacheProcessor

V tag data

$0
$1
$2
$3

Memory

78

120

71

173

21

28

200

225

Misses: 0

Hits: 0

0

0

Assume write-allocate
policy

Using byte addresses in this example! Addr Bus = 5 bits

Fully Associative Cache
2 cache lines
2 word block

4 bit tag field
1 bit block offset field

29

123

150
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

LB $1 ← M[1]
LB $2 ← M[7]
SB $2 → M[0]
SB $1 → M[5]
LB $2 ← M[10]
SB $1 → M[5]
SB $1 → M[10]

CacheProcessor

V tag data

$0
$1
$2
$3

Memory

78

120

71

173

21

28

200

225

Misses: 0

Hits: 0

0

0

Write-through performance

Each miss (read or write) reads a block from mem

Each store writes an item to mem

Evictions don’t need to write to mem

Write-through policy with write allocate
Cache miss: read entire block from memory
Write: write only updated item to memory
Eviction: no need to write to memory

Can we also design the cache NOT to write all
stores immediately to memory?

• Keep the most current copy in cache, and update
memory when that data is evicted (write-back
policy)

• Do we need to write-back all evicted lines?
– No, only blocks that have been stored into (written)

V = 1 means the line has valid data
D = 1 means the bytes are newer than main memory
When allocating line:

• Set V = 1, D = 0, fill in Tag and Data

When writing line:
• Set D = 1

When evicting line:
• If D = 0: just set V = 0
• If D = 1: write-back Data, then set D = 0, V = 0

V D Tag Byte 1 Byte 2 … Byte N

Example: How does a write-back cache work?
Assume write-allocate

29

123

150
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

LB $1 ← M[1]
LB $2 ← M[7]
SB $2 → M[0]
SB $1 → M[5]
LB $2 ← M[10]

CacheProcessor

V d tag data

$0
$1
$2
$3

Memory

78

120

71

173

21

28

200

225

Misses: 0

Hits: 0

0

0

LB $1 ← M[1]
LB $2 ← M[7]
SB $2 → M[0]
SB $1 → M[5]
LB $2 ← M[10]
SB $1 → M[5]
SB $1 → M[10]

Using byte addresses in this example! Addr Bus = 5 bits

Assume write-allocate
policy

Fully Associative Cache
2 cache lines
2 word block

3 bit tag field
1 bit block offset field

29

123

150
162

18

33

19

210

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

LB $1 ← M[1]
LB $2 ← M[7]
SB $2 → M[0]
SB $1 → M[5]
LB $2 ← M[10]

CacheProcessor

V d tag data

$0
$1
$2
$3

Memory

78

120

71

173

21

28

200

225

Misses: 0

Hits: 0

0

0

LB $1 ← M[1]
LB $2 ← M[7]
SB $2 → M[0]
SB $1 → M[5]
LB $2 ← M[10]
SB $1 → M[5]
SB $1 → M[10]

Write-back performance

Each miss (read or write) reads a block from mem

Some evictions write a block to mem

What are other performance tradeoffs between
write-through and write-back?

How can we further reduce penalty for cost of
writes to memory?

Performance: Write-back versus Write-through
Assume: large associative cache, 16-byte lines
for (i=1; i<n; i++)

A[0] += A[i];

for (i=0; i<n; i++)
B[i] = A[i]

Q: Hit time: write-through vs. write-back?

Q: Miss penalty: write-through vs. write-back?

Q: Writes to main memory are slow!

Q: When does it help?

Write-through is slower
• But simpler (memory always consistent)

Write-back is almost always faster
• write-back buffer hides large eviction cost
• But what about multiple cores with separate caches

but sharing memory?
Write-back requires a cache coherency protocol

• Inconsistent views of memory
• Need to “snoop” in each other’s caches
• Extremely complex protocols, very hard to get right

Q: Multiple readers and writers?
A: Potentially inconsistent views of memory

Mem

L2

L1 L1

Cache coherency protocol
• May need to snoop on other CPU’s cache activity
• Invalidate cache line when other CPU writes
• Flush write-back caches before other CPU reads
• Or the reverse: Before writing/reading…
• Extremely complex protocols, very hard to get right

CPU

L1 L1

CPU

L2

L1 L1

CPU

L1 L1

CPU

disknet A

A
A
AA’

A

Write-through policy with write allocate
• Cache miss: read entire block from memory
• Write: write only updated item to memory
• Eviction: no need to write to memory
• Slower, but cleaner

Write-back policy with write allocate
• Cache miss: read entire block from memory

– But may need to write dirty cacheline first
• Write: nothing to memory
• Eviction: have to write to memory, entire cacheline

because don’t know what is dirty (only 1 dirty bit)
• Faster, but complicated with multicore

Performance: What is the average memory access
time (AMAT) for a cache?

AMAT = %hit x hit time + % miss x miss time

Average Memory Access Time (AMAT)
Cache Performance (very simplified):
L1 (SRAM): 512 x 64 byte cache lines, direct mapped

Data cost: 3 cycle per word access
Lookup cost: 2 cycle

Mem (DRAM): 4GB
Data cost: 50 cycle for first word, plus 3 cycles per

subsequent word

16 words (i.e. 64 / 4 = 16)

Average Memory Access Time (AMAT)
Cache Performance (very simplified):
L1 (SRAM): 512 x 64 byte cache lines, direct mapped

Data cost: 3 cycle per word access
Lookup cost: 2 cycle

Mem (DRAM): 4GB
Data cost: 50 cycle for first word, plus 3 cycles per

subsequent word

16 words (i.e. 64 / 4 = 16)

Cache Performance (very simplified):
L1 (SRAM): 512 x 64 byte cache lines, direct mapped

Hit time: 5 cycles
L2 cache: bigger

Hit time = 20 cycles
Mem (DRAM): 4GB
Hit rate: 90% in L1, 90% in L2

Often: L1 fast and direct mapped, L2 bigger and higher
associativity

Average memory access time (AMAT)
depends on cache architecture and size
access time for hit,
miss penalty, miss rate

Cache design a very complex problem:
• Cache size, block size (aka line size)
• Number of ways of set-associativity (1, N, ∞)
• Eviction policy
• Number of levels of caching, parameters for each
• Separate I-cache from D-cache, or Unified cache
• Prefetching policies / instructions
• Write policy

// H = 12, W = 10

int A[H][W];

for(x=0; x < W; x++)

for(y=0; y < H; y++)

sum += A[y][x];

// H = 12, W = 10

int A[H][W];

for(y=0; y < H; y++)

for(x=0; x < W; x++)

sum += A[y][x];

> dmidecode -t cache
Cache Information

Configuration: Enabled, Not Socketed, Level 1
Operational Mode: Write Back
Installed Size: 128 KB
Error Correction Type: None

Cache Information
Configuration: Enabled, Not Socketed, Level 2
Operational Mode: Varies With Memory Address
Installed Size: 6144 KB
Error Correction Type: Single-bit ECC

> cd /sys/devices/system/cpu/cpu0; grep cache/*/*
cache/index0/level:1
cache/index0/type:Data
cache/index0/ways_of_associativity:8
cache/index0/number_of_sets:64
cache/index0/coherency_line_size:64
cache/index0/size:32K
cache/index1/level:1
cache/index1/type:Instruction
cache/index1/ways_of_associativity:8
cache/index1/number_of_sets:64
cache/index1/coherency_line_size:64
cache/index1/size:32K
cache/index2/level:2
cache/index2/type:Unified
cache/index2/shared_cpu_list:0-1
cache/index2/ways_of_associativity:24
cache/index2/number_of_sets:4096
cache/index2/coherency_line_size:64
cache/index2/size:6144K

Dual-core 3.16GHz Intel
(purchased in 2011)

Dual 32K L1 Instruction caches
• 8-way set associative
• 64 sets
• 64 byte line size

Dual 32K L1 Data caches
• Same as above

Single 6M L2 Unified cache
• 24-way set associative (!!!)
• 4096 sets
• 64 byte line size

4GB Main memory
1TB Disk

Dual-core 3.16GHz Intel
(purchased in 2009)

Memory performance matters!
• often more than CPU performance
• … because it is the bottleneck, and not improving much
• … because most programs move a LOT of data

Design space is huge
• Gambling against program behavior
• Cuts across all layers:

users programs os hardware

Multi-core / Multi-Processor is complicated
• Inconsistent views of memory
• Extremely complex protocols, very hard to get right

	Caches 3
	Overview
	What about Stores?
	Cache Write Policies
	Write Allocation Policies
	Next Goal
	Handling Stores (Write-Through)
	Write-Through (REF 1)
	How Many Memory References?
	Summary: Write Through
	Write-Through vs. Write-Back
	Write-Back Meta-Data
	Write-back Example
	Handling Stores (Write-Back)
	Write-Back (REF 1)
	How Many Memory References?
	So is write back just better?
	Performance: An Example
	Performance Tradeoffs
	Write Buffering
	Write-through vs. Write-back
	Cache-coherency
	Slide Number 23
	Next Goal
	Cache Performance Example
	Cache Performance Example
	Multi Level Caching
	Performance Summary
	Cache Conscious Programming
	Cache Conscious Programming
	A Real Example
	A Real Example
	Slide Number 33
	Summary

