
Prof. Hakim Weatherspoon
CS 3410, Spring 2015

Computer Science
Cornell University

See P&H Chapter: 4.6-4.8

Prelim next week
Tuesday at 7:30.
Go to location based on netid

[a-g]* → MRS146: Morrison Hall 146
[h-l]* → RRB125: Riley-Robb Hall 125
[m-n]*→ RRB105: Riley-Robb Hall 105
[o-s]* → MVRG71: M Van Rensselaer Hall G71
[t-z]* → MVRG73: M Van Rensselaer Hall G73

Prelim reviews
Yesterday, Tue, Feb 24 @ 7:30pm in Olin 255
SATURDAY, Feb 28 @ 7:30pm in Upson B17

Prelim conflicts
Contact Deniz Altinbuken <deniz@cs.cornell.edu>

Prelim1:
• Time: We will start at 7:30pm sharp, so come early
• Location: on previous slide
• Closed Book

• Cannot use electronic device or outside material

• Practice prelims are online in CMS

Material covered everything up to end of this week
• Everything up to and including data hazards
• Appendix B (logic, gates, FSMs, memory, ALUs)
• Chapter 4 (pipelined [and non] MIPS processor with hazards)
• Chapters 2 (Numbers / Arithmetic, simple MIPS instructions)
• Chapter 1 (Performance)
• HW1, Lab0, Lab1, Lab2, C-Lab0, C-Lab1

Data Hazards
• Data dependencies
• Problem, detection, and solutions

– (delaying, stalling, forwarding, bypass, etc)

• Hazard detection unit
• Forwarding unit

Control Hazards
• What is the next instruction to execute if a branch is

taken? Not taken?
• How to resolve control hazards
• Optimizations

3 kinds
• Structural hazards

– Multiple instructions want to use same unit

• Data hazards
– Results of instruction needed before

• Control hazards
– Don’t know which side of branch to take

• What to do if data hazard detected?
i.e. add r3, r1, r2

sub r5, r3, r4

• Options
• Nothing

• Change the ISA to match implementation
• Stall

• Pause current and subsequent instructions till safe
• Slow down the pipeline (add bubbles to pipeline)

• Forward/bypass
• Forward data value to where it is needed

Data Hazards
• register file reads occur in stage 2 (ID)
• register file writes occur in stage 5 (WB)
• next instructions may read values about to be written

Stall
• Pause current and all subsequent instructions

Forward/Bypass
• Try to steal correct value from elsewhere in pipeline
• Otherwise, fall back to stalling or require a delay slot

Tradeoffs?

data
mem

im
m

B

A

B

D

M

D
inst

mem

D
B

A

Rd Rd

Rb W
E

W
E

M
C

Ra M
C

detect
hazard

IF/ID ID/Ex Ex/Mem Mem/WB

forward
unit

stall = If(IF/ID.Ra ≠ 0 &&
(IF/ID.Ra == ID/Ex.Rd
IF/ID.Ra == Ex/M.Rd
IF/ID.Ra == M/W.Rd))

Rd

data
mem

im
m

B

A

B

D

M

D
inst

mem

D
B

A

Rd Rd

Rb

W
E

W
E

M
C

Ra

M
C

forward
unit

detect
hazard

Three types of forwarding/bypass
• Forwarding from Ex/Mem registers to Ex stage (M→Ex)
• Forwarding from Mem/WB register to Ex stage (W → Ex)
• RegisterFile Bypass

IF/ID ID/Ex Ex/Mem Mem/WB

Pause current and all subsequent instructions

“slow down the pipeline”

Clock cycle
1 2 3 4 5 6 7 8

add r3, r1, r2

sub r5, r3, r5

or r6, r3, r4

add r6, r3, r8

r3 = 10

r3 = 20

time

IF ID Ex M W

IF ID Ex M W

IF ID Ex M

ID ID ID

IF IF IF

IF ID Ex

Stalls3 Stall

data
mem

B

A

B

D

M

D
inst

mem

D
rD B

A

Rd RdRd

W
E

W
E

O
p

W
E

O
p

rA rB

PC

+4

O
pnop

in
st

/stall

add r3,r1,r2

(MemWr=0
RegWr=0)

NOP = If(IF/ID.rA ≠ 0 &&
(IF/ID.rA==ID/Ex.Rd
IF/ID.rA==Ex/M.Rd
IF/ID.rA==M/W.Rd))

sub r5,r3,r5

or r6,r3,r4 (WE=0)

data
mem

B

A

B

D

M

D
inst

mem

D
rD B

A

Rd RdRd

W
E

W
E

O
p

W
E

O
p

rA rB

PC

+4

O
pnop

in
st

/stall

nop

(MemWr=0
RegWr=0)

NOP = If(IF/ID.rA ≠ 0 &&
(IF/ID.rA==ID/Ex.Rd
IF/ID.rA==Ex/M.Rd
IF/ID.rA==M/W.Rd))

add r3,r1,r2sub r5,r3,r5

(MemWr=0
RegWr=0)

or r6,r3,r4 (WE=0)

data
mem

B

A

B

D

M

D
inst

mem

D
rD B

A

Rd RdRd

W
E

W
E

O
p

W
E

O
p

rA rB

PC

+4

O
pnop

in
st

/stall

(MemWr=0
RegWr=0)

NOP = If(IF/ID.rA ≠ 0 &&
(IF/ID.rA==ID/Ex.Rd
IF/ID.rA==Ex/M.Rd
IF/ID.rA==M/W.Rd))

add r3,r1,r2sub r5,r3,r5 nop nop

(MemWr=0
RegWr=0)

(MemWr=0
RegWr=0)

or r6,r3,r4 (WE=0)

How to stall an instruction in ID stage
• prevent IF/ID pipeline register update

– stalls the ID stage instruction

• convert ID stage instr into nop for later stages
– innocuous “bubble” passes through pipeline

• prevent PC update
– stalls the next (IF stage) instruction

Alternative to stalling, we can forward
Forwarding bypasses some pipelined stages forwarding
a result to a dependent instruction operand (register)

Three types of forwarding/bypass
• Forwarding from Ex/Mem registers to Ex stage (M→Ex)
• Forwarding from Mem/WB register to Ex stage (W→Ex)
• RegisterFile Bypass

Clock cycle
1 2 3 4 5 6 7 8

add r3, r1, r2

sub r5, r3, r5

or r6, r3, r4

add r6, r3, r8

IF ID Ex M W

IF ID

IF W

Ex M W

ID Ex M

IF ID Ex

r3 = 10

r3 = 20

time

M W

Alternative to stalling, we can forward
Forwarding bypasses some pipelined stages forwarding
a result to a dependent instruction operand (register)

Three types of forwarding/bypass
• Forwarding from Ex/Mem registers to Ex stage (M→Ex)
• Forwarding from Mem/WB register to Ex stage (W→Ex)
• RegisterFile Bypass

add r3, r1, r2

sub r5, r3, r1

data
mem

inst
mem

D
B

A

M WIF ID Ex

IF ID Ex M W

data
mem

im
m

B

A

B

D

M

D
inst

mem

D
B

A

Rd Rd

Rb

W
E

W
E

M
C

Ra

M
C

detect
hazard

Three types of forwarding/bypass
• Forwarding from Ex/Mem registers to Ex stage (M→Ex)
• Forwarding from Mem/WB register to Ex stage (W → Ex)
• RegisterFile Bypass

IF/ID ID/Ex Ex/Mem Mem/WB

forward
unit

data
mem

im
m

B

A

B

D

M

D
inst

mem

D
B

A

Rd Rd

Rb

W
E

W
E

M
C

Ra

M
C

forward
unit

detect
hazard

Three types of forwarding/bypass
• Forwarding from Ex/Mem registers to Ex stage (M→Ex)
• Forwarding from Mem/WB register to Ex stage (W → Ex)
• RegisterFile Bypass

IF/ID ID/Ex Ex/Mem Mem/WB

Ex/MEM to EX Bypass
• EX needs ALU result that is still in MEM stage
• Resolve:

Add a bypass from EX/MEM.D to start of EX

How to detect? Logic in Ex Stage:
forward = (Ex/M.WE && EX/M.Rd != 0 &&

ID/Ex.Ra == Ex/M.Rd)
|| (same for Rb)

add r3, r1, r2

sub r5, r3, r1

or r6, r3, r4

data
mem

inst
mem

D
B

A

IF ID Ex M W

IF ID

IF W

Ex M W

ID Ex M

Mem/WB to EX Bypass
• EX needs value being written by WB
• Resolve:

Add bypass from WB final value to start of EX

How to detect? Logic in Ex Stage:
forward = (M/WB.WE && M/WB.Rd != 0 &&

ID/Ex.Ra == M/WB.Rd &&
|| (same for Rb)

Is this it?
Not quite!

How to detect? Logic in Ex Stage. Forward from M/WB reg if:
M/WB (WE on, Rd != 0) and (M/WB.Rd == ID/Ex.Ra)
also NOT(Ex/M.Rd == ID/Ex.Ra) and (WE, Rd!= 0))

Rb same as Ra

add r3, r1, r2

sub r3, r3, r5
or r6, r3, r4

add r6, r3, r8

add r3, r1, r2

sub r5, r3, r5
or r6, r3, r4

add r6, r3, r8

Check pg. 311

Register File Bypass
• Reading a value that is currently being written

Detect:
((Ra == MEM/WB.Rd) or (Rb == MEM/WB.Rd))
and (WB is writing a register)

Resolve:
Add a bypass around register file (WB to ID)
Better: just negate register file clock
– writes happen at end of first half of each clock cycle
– reads happen during second half of each clock cycle

add r3, r1, r2

sub r5, r3, r1

or r6, r3, r4

add r6, r3, r8

data
mem

inst
mem

D
B

A

IF ID Ex M W
IF ID

IF W
Ex M W
ID Ex M
IF ID Ex M W

add r3, r1, r2

lw r4, 20(r8)
or r6, r3, r4

add r6, r3, r8

Memory “Load-Use Data Hazard”

What happens if data dependency after a load
word instruction?

Memory Load Data Hazard
• Value not available until after the M stage
• So: next instruction can’t proceed if hazard detected

Ex

lw r4, 20(r8)

or r6, r3, r4

data
mem

inst
mem

D
B

A

IF ID Ex M W

IF ID Ex M WID
Stall

load-use stall

Ex

lw r4, 20(r8)

or r6, r3, r4

data
mem

inst
mem

D
B

A

IF ID Ex M W

IF ID Ex M WID
Stall

load-use stall

lw r4, 20(r8)or r6,r4,r1

data
mem

inst
mem

D
B

A

NOPor r6,r4,r1 lw r4, 20(r8)

Ex

lw r4, 20(r8)

or r6, r3, r4

IF ID Ex M W

IF ID Ex M WID
Stall

load-use stall

data
mem

inst
mem

D
B

A

NOPor r6,r4,r1 lw r4, 20(

Ex

lw r4, 20(r8)

or r6, r3, r4

IF ID Ex M W

IF ID Ex M WID
Stall

load-use stall

data
memim

m

B

A

B

D

M

D
inst

mem

D
B

A

Rd Rd

Rb

W
E

W
E

M
CRa

M
C

forward
unit

detect
hazard

IF/ID ID/Ex Ex/Mem Mem/WB

Stall =
If(ID/Ex.MemRead &&

IF/ID.Ra == ID/Ex.Rd

Rd
M

C

Load Data Hazard
• Value not available until WB stage
• So: next instruction can’t proceed if hazard detected

Resolution:
• MIPS 2000/3000: one delay slot

– ISA says results of loads are not available until one cycle later
– Assembler inserts nop, or reorders to fill delay slot

• MIPS 4000 onwards: stall
– But really, programmer/compiler reorders to avoid stalling in the load

delay slot

For stall, how to detect? Logic in ID Stage
– Stall = ID/Ex.MemRead &&

(IF/ID.Ra == ID/Ex.Rd || IF/ID.Rb == ID/Ex.Rd)

Find all hazards, and say how they are resolved:

add r3, r1, r2
nand r5, r3, r4
add r2, r6, r3
lw r6, 24(r3)
sw r6, 12(r2)

Find all hazards, and say how they are resolved:

add r3, r1, r2
nand r5, r3, r4
add r2, r6, r3
lw r6, 24(r3)
sw r6, 12(r2)

5 Hazards

Find all hazards, and say how they are resolved:

add r3, r1, r2
nand r5, r3, r4
add r2, r6, r3
lw r6, 24(r3)
sw r6, 12(r2)

Forwarding from Ex/M→ID/Ex (M→Ex)

Forwarding from M/W→ID/Ex (W→Ex)

RegisterFile (RF) Bypass

Forwarding from M/W→ID/Ex (W→Ex)

Stall
+ Forwarding from M/W→ID/Ex (W→Ex)

5 Hazards

Delay Slot(s)
• Modify ISA to match implementation

Stall
• Pause current and all subsequent instructions

Forward/Bypass
• Try to steal correct value from elsewhere in pipeline
• Otherwise, fall back to stalling or require a delay slot

Logic and gates
Numbers & arithmetic
States & FSMs
Memory
A simple CPU
Performance
Pipelining
Hazards: Data and Control

Logic and gates
Numbers & arithmetic
States & FSMs
Memory
A simple CPU
Performance
Pipelining
Hazards: Data and Control
Computer Organization is fundamental to CS

What about branches?
A control hazard occurs if there is a control instruction
(e.g. BEQ) and the program counter (PC) following the
control instruction is not known until the control
instruction computes if the branch should be taken

e.g.
0x10: beq r1, r2, L
0x14: add r3, r0, r3
0x18: sub r5, r4, r6
0x1C: L: or r3, r2, r4

Control Hazards
• instructions are fetched in stage 1 (IF)
• branch and jump decisions occur in stage 3 (EX)
• i.e. next PC is not known until 2 cycles after branch/jump

What happens to instr following a branch, if branch not taken?
A) Stall
B) Forward/Bypass
C) Zap/Flush
D) All the above
E) None of the above

e.g.
0x10: beq r1, r2, L
0x14: add r3, r0, r3
0x18: sub r5, r4, r6
0x1C: L: or r3, r2, r4

Control Hazards
• instructions are fetched in stage 1 (IF)
• branch and jump decisions occur in stage 3 (EX)
• i.e. next PC is not known until 2 cycles after branch/jump

What happens to instr following a branch, if branch taken?
A) Stall
B) Forward/Bypass
C) Zap/Flush
D) All the above
E) None of the above

e.g.
0x10: beq r1, r2, L
0x14: add r3, r0, r3
0x18: sub r5, r4, r6
0x1C: L: or r3, r2, r4

Control Hazards
• instructions are fetched in stage 1 (IF)
• branch and jump decisions occur in stage 3 (EX)
• i.e. next PC is not known until 2 cycles after branch/jump

What happens to instr following a branch, if branch taken?
Stall (+ Zap/Flush)

• prevent PC update
• clear IF/ID pipeline register

– instruction just fetched might be wrong one, so convert to nop

• allow branch to continue into EX stage

data
mem

inst
mem D

B

A

PC

+4

branch
calc

decide
branch

beq r1, r2, L

add r3, r0, r3

sub r5, r4, r6

L: or r3, r2, r4

data
mem

inst
mem D

B

A

PC

+4

NOP

IF ID Ex M W

IF ID NOP NOP
NOPIF NOP NOP NOP

branch
calc

decide
branch

IF ID Ex M W

10:

14:

18:

1C:

If branch TakenNew PC = 1C →Zap

beq r1, r2, L

add r3, r0, r3

sub r5, r4, r6

L: or r3, r2, r4

data
mem

inst
mem D

B

A

PC

+4

NOP

IF ID Ex M W

IF ID NOP NOP
NOPIF NOP NOP NOP

branch
calc

decide
branch

IF ID Ex M W

10:

14:

18:

1C:

If branch TakenNew PC = 1C

data
mem

inst
mem D

B

A

PC

+4

branch
calc

decide
branch

14: add r3,r0,r3 10: beq r1, r2, L

data
mem

inst
mem D

B

A

PC

+4

branch
calc

decide
branch

14: add r3,r0,r3 10: beq r1, r2, L 18: sub r5,r4,r6

data
mem

inst
mem D

B

A

PC

+4

branch
calc

decide
branch

NOP 10: beq r1, r2, L 1C: or r3,r2,r4 NOP

data
mem

inst
mem D

B

A

PC

+4

branch
calc

decide
branch

NOP 10: beq r1, r2, L 1C: or r3,r2,r4 NOP

Control hazards occur because the PC following a
control instruction is not known until control
instruction computes if branch should be taken or
not.
If branch taken, then need to zap/flush
instructions.
There is a performance penalty for branches:
Need to stall, then may need to zap (flush)
subsequent instructions that have already been
fetched.

Can we reduce the cost of a control hazard?

Can we forward/bypass values for branches?
• We can move branch calc from EX to ID
• will require new bypasses into ID stage; or can just zap

the second instruction

What happens to instructions following a branch, if
branch taken?

• Still need to zap/flush instructions

Is there still a performance penalty for branches
• Yes, need to stall, then may need to zap (flush)

subsequent instructions that have already been fetched

data
mem

inst
mem D

B

A

PC

+4

branch
calc

decide
branch

data
mem

inst
mem D

B

A

PC

+4

branch
calc

decide
branch

beq r1, r2, L

add r3, r0, r3

sub r5, r4, r6

L: or r3, r2, r4

data
mem

inst
mem D

B

A

PC

+4

NOP

IF ID Ex M W

IF NOP NOP NOP

IF ID Ex M W

10:

14:

18:

1C:

If branch TakenNew PC = 1C →Zap

branch
calc

decide
branch

beq r1, r2, L

add r3, r0, r3

sub r5, r4, r6

L: or r3, r2, r4

data
mem

inst
mem D

B

A

PC

+4

NOP

IF ID Ex M W

IF NOP NOP NOP

IF ID Ex M W

10:

14:

18:

1C:

If branch TakenNew PC = 1C →Zap

branch
calc

decide
branch

data
mem

inst
mem D

B

A

PC

+4

branch
calc

decide
branch

10: beq r1,r2,L

10

14
14

data
mem

inst
mem D

B

A

PC

+4

branch
calc

decide
branch

14: add r3,r0,r3 10: beq r1, r2, L

14

1C
18

data
mem

inst
mem D

B

A

PC

+4

branch
calc

decide
branch

1C: or r3,r2,r4 NOP 10: beq r1, r2, L

1C

20
20

data
mem

inst
mem D

B

A

PC

+4

branch
calc

decide
branch

1C: or r3,r2,r4 NOP 10: beq r1, r2, L

20

24
24

20:

Control Hazards
• instructions are fetched in stage 1 (IF)
• branch and jump decisions occur in stage 3 (EX)
i.e. next PC is not known until 2 cycles after branch/jump
• Can optimize and move branch and jump decision to stage 2 (ID)
i.e. next PC is not known until 1 cycles after branch/jump

Stall (+ Zap)
• prevent PC update
• clear IF/ID pipeline register

– instruction just fetched might be wrong one, so convert to nop

• allow branch to continue into EX stage

Control hazards occur because the PC following a control
instruction is not known until control instruction
computes if branch should be taken or not

If branch taken, then need to zap/flush instructions.
There still a performance penalty for branches: Need to
stall, then may need to zap (flush) subsequent
instructions that have already been fetched

We can reduce cost of a control hazard by moving branch
decision and calculation from Ex stage to ID stage. This
reduces the cost from flushing two instructions to only
flushing one.

Delay Slot
• ISA says N instructions after branch/jump always executed

– MIPS has 1 branch delay slot

– i.e. Whether branch taken or not, instruction following branch is
always executed

beq r1, r2, L

add r3, r0, r3

sub r5, r4, r6

L: or r3, r2, r4

data
mem

inst
mem D

B

A

PC

+4

IF ID Ex M W

IF

IF ID Ex M W

10:

14:

18:

1C:

Delay slot
If branch taken next instr still exec'd

branch
calc

decide
branch

ID Ex M W

beq r1, r2, L

add r3, r0, r3

sub r5, r4, r6

L: or r3, r2, r4

data
mem

inst
mem D

B

A

PC

+4

IF ID Ex M W

IF

IF ID Ex M W

10:

14:

18:

1C:

branch
calc

decide
branch

ID Ex M W

IF ID Ex M W

Delay slot
If branch not taken next instr still exec’d

Control Hazards
• instructions are fetched in stage 1 (IF)
• branch and jump decisions occur in stage 3 (EX)
i.e. next PC is not known until 2 cycles after branch/jump
• Can optimize and move branch and jump decision to stage 2 (ID)
i.e. next PC is not known until 1 cycles after branch/jump

Stall (+ Zap)
• prevent PC update
• clear IF/ID pipeline register

– instruction just fetched might be wrong one, so convert to nop
• allow branch to continue into EX stage

Delay Slot
• ISA says N instructions after branch/jump always executed

– MIPS has 1 branch delay slot

Control hazards occur because the PC following a control
instruction is not known until control instruction computes if
branch should be taken or not. If branch taken, then need to
zap/flush instructions. There still a performance penalty for
branches: Need to stall, then may need to zap (flush) subsequent
instructions that have already been fetched.

We can reduce cost of a control hazard by moving branch decision
and calculation from Ex stage to ID stage. This reduces the cost
from flushing two instructions to only flushing one.

Delay Slots can potentially increase performance due to control
hazards by putting a useful instruction in the delay slot since the
instruction in the delay slot will always be executed. Requires
software (compiler) to make use of delay slot. Put nop in delay
slot if not able to put useful instruction in delay slot.

Speculative Execution
• “Guess” direction of the branch

– Allow instructions to move through pipeline
– Zap them later if wrong guess

• Useful for long pipelines

Pipeline so far
• “Guess” (predict) that the branch will not be taken

We can do better!
• Make prediction based on last branch
• Predict “take branch” if last branch “taken”
• Or Predict “do not take branch” if last branch “not

taken”

• Need one bit to keep track of last branch

While (r3 ≠ 0) {…. r3--;}
Top: BEQZ r3, End

J Top
End:

While (r3 ≠ 0) {…. r3--;}
Top2: BEQZ r3, End2

J Top
End2:

What is accuracy of branch
predictor?
Wrong twice per loop!
Once on loop enter and exit
We can do better with 2
bits

Predict Taken 2
(PT2)

Branch Taken (T)

Predict Taken 1 (PT1)

Predict Not Taken 1
(PT1)

Predict Not Taken 2
(PT2)

Branch Not Taken (NT)

Branch Taken (T) Branch Not Taken (NT)

Branch Taken (T)

Branch Not Taken (NT)

Control hazards
• Is branch taken or not?
• Performance penalty: stall and flush

Reduce cost of control hazards
• Move branch decision from Ex to ID

• 2 nops to 1 nop

• Delay slot
• Compiler puts useful work in delay slot. ISA level.

• Branch prediction
• Correct. Great!

• Wrong. Flush pipeline. Performance penalty

Data hazards

Control hazards

Structural hazards
• resource contention
• so far: impossible because of ISA and pipeline design

Data hazards
• register file reads occur in stage 2 (IF)
• register file writes occur in stage 5 (WB)
• next instructions may read values soon to be written

Control hazards
• branch instruction may change the PC in stage 3 (EX)
• next instructions have already started executing

Structural hazards
• resource contention
• so far: impossible because of ISA and pipeline design

	Data and Control Hazards
	Announcements
	Announcements
	Goals for Today
	Hazards
	How to handle data hazards
	Data Hazards
	Data Hazards
	Data Hazards
	Data Hazards
	Stalling
	Stalling
	Stalling
	Stalling
	Stalling
	Stalling
	Forwarding
	Forwarding Example
	Forwarding
	Forwarding Datapath 1
	Forwarding Datapath
	Forwarding Datapath
	Forwarding Datapath 1
	Forwarding Datapath 2
	Forwarding Datapath 2
	Forwarding Datapath 2
	Register File Bypass
	Register File Bypass
	Are we done yet?
	Memory Load Data Hazard
	Memory Load Data Hazard
	Memory Load Data Hazard
	Memory Load Data Hazard
	Memory Load Data Hazard
	Memory Load Data Hazard
	Memory Load Data Hazard
	Quiz
	Quiz
	Quiz
	Data Hazard Recap
	Why are we learning about this?
	Why are we learning about this?
	Control Hazards
	Control Hazards
	Control Hazards
	Control Hazards
	Control Hazards
	Control Hazards
	Control Hazards
	Control Hazards
	Control Hazards
	Control Hazards
	Control Hazards
	Takeaway
	Next Goal
	Reduce the cost of control hazard?
	Control Hazards
	Control Hazards
	Control Hazards
	Control Hazards
	Control Hazards
	Control Hazards
	Control Hazards
	Control Hazards
	Control Hazards
	Takeaway
	Reduce cost of Control Hazards More
	Delay Slot
	Delay Slot
	Control Hazards
	Takeaway
	Reduce cost of Ctrl Haz even further?
	Speculative Execution: Loops
	Speculative Execution: Loops
	Speculative Execution: Branch Execution
	Summary
	Hazards Summary
	Hazards Summary

