Pipelining and Hazards

Prof. Hakim Weatherspoon
CS 3410, Spring 2015
Computer Science
Cornell University

See P&H Chapter: 4.6-4.8

Announcements

Prelim next week

Tuesday at 7:30.

Go to location based on netid
a-g]* > MRS146: Morrison Hall 146
h-11* - RRB125: Riley-Robb Hall 125
'm-n]*—> RRB105: Riley-Robb Hall 105
0-s]* > MVRG71: M Van Rensselaer Hall G71
t-z]* - MVRG73: M Van Rensselaer Hall G73
Prelim reviews

TODAY, Tue, Feb 24 @ 7:30pm in Olin 255

Sat, Feb 28 @ 7:30pm in Upson B17
Prelim conflicts

Contact Deniz Altinbuken <deniz@cs.cornell.edu>

Announcements

Preliml1:

Time: We will start at 7:30pm sharp, so come early
Location: on previous slide
Closed Book

e Cannot use electronic device or outside material

Practice prelims are online in CMS

Material covered everything up to end of this week
 Everything up to and including data hazards

 Appendix B (logic, gates, FSMs, memory, ALUs)

 Chapter 4 (pipelined [and non] MIPS processor with hazards)
 Chapters 2 (Numbers / Arithmetic, simple MIPS instructions)
 Chapter 1 (Performance)

e HWI, Lab0, Lab1, Lab2, C-Lab0, C-Lab1l

Goals for Today
RISC and Pipelined Processor: Putting it all together

Data Hazards
 Data dependencies

* Problem, detection, and solutions
— (delaying, stalling, forwarding, bypass, etc)

e Hazard detection unit
 Forwarding unit

Next time

 Control Hazards
What is the next instruction to execute if
a branch is taken? Not taken?

MIPS Design Principles
Simplicity favors regularity

e 32 bit instructions

Smaller is faster
* Small register file

Make the common case fast
* Include support for constants

Good design demands good compromises
» Support for different type of interpretations/classes

Recall: MIPS instruction formats
All MIPS instructions are 32 bits long, has 3 formats

R-type op rs rt rd shamt func
6 bits 5bits 5bits 5bits 5bits 6 bits

-type op rs rt immediate
6 bits 5 bits 5 bits 16 bits

op 1immediate (target address)
6 bits 26 bits

J-type

Recall: MIPS Instruction Types

Arithmetic/Logical
* R-type: result and two source registers, shift amount
e |-type: 16-bit immediate with sign/zero extension

Memory Access
* load/store between registers and memory
* word, half-word and byte operations

Control flow

* conditional branches: pc-relative addresses
* jumps: fixed offsets, register absolute

Recall: MIPS Instruction Types

Arithmetic/Logical

 ADD, ADDU, SUB, SUBU, AND, OR, XOR, NOR, SLT, SLTU

* ADDI, ADDIU, ANDI, ORI, XORI, LUI, SLL, SRL, SLLV, SRLV, SRAV,
SLTI, SLTIU

* MULT, DIV, MFLO, MTLO, MFHI, MTHI
Memory Access

e LW, LH, LB, LHU, LBU, LWL, LWR

* SW, SH, SB, SWL, SWR

Control flow
e BEQ, BNE, BLEZ, BLTZ, BGEZ, BGTZ
* J,JR, JAL, JALR, BEQL, BNEL, BLEZL, BGTZL
Special
e LL, SC, SYSCALL, BREAK, SYNC, COPROC

Pipelining
Principle:
Throughput increased by parallel execution

Balanced pipeline very important

Else slowest stage dominates performance

Pipelining:
 |dentify pipeline stages
* |solate stages from each other
* Resolve pipeline hazards (this and next lecture)

Basic Pipeline
Five stage “RISC” load-store architecture

1. Instruction fetch (IF)
— get instruction from memory, increment PC

2. Instruction Decode (ID)
— translate opcode into control signals and read registers

3. Execute (EX)

— perform ALU operation, compute jump/branch targets

4. Memory (MEM)

— access memory if needed

5. Writeback (WB)

— update register file

Pipelined Implementation

* Each instruction goes through the 5 stages

 Each stage takes one clock cycle

 So slowest stage determines clock cycle time

Clock cycle 1 2 3 4 5 6 7 3 9
4>
add IF ID ||| EX ||IMEM|||WB
lw IF {|| ID {|| EX ||[MEM]|||WB
|F ID EX [IMEM||| WB
|F ID EX [IMEM||| WB
|F ID EX [IMEM||| WB

Time Graphs

Pipelined Implementation

* Each instruction goes through the 5 stages

 Each stage takes one clock cycle

 So slowest stage determines clock cycle time

e Stages must share information. How?

 Add pipeline registers (flip-flops) to pass results
between different stages

Pipelined Processor

register
file

compute
jump/branch
targets

\—> extend
()

D
ecode S <

register
file

PC ARz
A =
v memory
compute 1‘
= jump/branch
\—> extend c targets

Instruction Instruction —{— - — | =

-1 0 —> —> +

Fetch Decode °© Execute — °| Memory 5| ©

IF/ID ID/EX EX/MEM MEM/WB

Pipelined Implementation

* Each instruction goes through the 5 stages

 Each stage takes one clock cycle

 So slowest stage determines clock cycle time

e Stages must share information. How?

 Add pipeline registers (flip-flops) to pass results
between different stages

And is this it?
Not quite....

Hazards
3 kinds

e Structural hazards
— Multiple instructions want to use same unit

 Data hazards
— Results of instruction needed before ready

e Control hazards
— Don’t know which side of branch to take

Will get back to this
First, how to pipeline when no hazards

register
file

PC ARz
A =
v memory
compute 1‘
= jump/branch
\—> extend c targets

Instruction Instruction —{— - — | =

-1 0 —> —> +

Fetch Decode °© Execute — °| Memory 5| ©

IF/ID ID/EX EX/MEM MEM/WB

Example: : Sample Code (Simple)

add r3, rl, r2;
nand r6, r4, rb5;
1w r4, 20(r2);
add r5, r2, r5;
SW r7, 12(r3);

Example: Sample Code (Simple)

Assume eight-register machine

Run the following code on a pipelined datapath

add
nand

lw
add

SW

Slides thanks to Sally McKee

r3rl r2 ;reg3=regl+reg?
6 r4 r5 ; reg6="(reg4 & reg5)
r4 20(r2) ; reg4 = Mem|reg2+20]
r'5 r2 r5 ; reg5=reg2+reg5
r7 12(r3) ; Memlreg3+12] =reg 7

RN

PC

PC+4

uonanJisul

Register file

Bits 11-15

PC+4

target

/

valA

valB

< c 2

ALU

result

\/
- >

c

valB

IF/ID

. Rd ™
Bits 16-20 Rt }UJ dest
Bits 26-31
op op

ID/EX

ALU
result M
U
mdata X
data
dest
dest
op

EX/MEM

MEM/WB

At time],

xXxc<

data
dest

Fetch
addr3rlr2
1
N
4 o
*H o 0
0
. T
4 ﬁ = || >k JiLe
2 0 M
g v v
0
prend 0
Initial Bits 11-15 0 1D
State Bits 16-20 0 }UJ 0
Bits 26-31
nop nop
rime:0 IF/ID ID/EX EX/MEM

nop

MEM/WB

Takeaway

Pipelining is a powerful techniqgue to mask
latencies and increase throughput

* Logically, instructions execute one at a time
* Physically, instructions execute in parallel

— Instruction level parallelism

Abstraction promotes decoupling

* Interface (ISA) vs. implementation (Pipeline)

Hazards

See P&H Chapter: 4.7-4.8

Hazards
3 kinds

e Structural hazards

— Multiple instructions want to use same unit

e Data hazards

— Results of instruction needed before

e Control hazards

— Don’t know which side of branch to take

Next Goal

What about data dependencies (also known as a
data hazard in a pipelined processor)?

i.e. add(r3)r1, r2
sub r5(r3) r4

Need to detect and then fix such hazards

Data Hazards
Data Hazards

 register file reads occur in stage 2 (ID)
 register file writes occur in stage 5 (WB)
* next instructions may read values about to be written

— i.e instruction may need values that are being computed
further down the pipeline

— in fact, this is quite common

DaFa Hazards
Clock cycle

1 2 3 4 5 6 7 8

time

addr3,r1, r2

subr5,r3,r4d

lw r6, 4(r3)

orr5,r3,r5

sw r6, 12(r3)

v

Data Hazards
Data Hazards

 register file reads occur in stage 2 (ID)
 register file writes occur in stage 5 (WB)
* next instructions may read values about to be written

i.e. add @rl, r2

sub r5,@r4

ﬁ-low to detect?]

Detecting Data Hazards

—>] < >
: 2 Rd A
INst >p > 0 [O N
mem - B = m =
Sl 2l (RaRb addr
A ‘T’ E >
T g _>/ el e dln dout N 2 /
— +4
T mem
@)
P o
I = Snm—— N
IiC = lIF/ID.Ra # 0 && /<E,>/<:‘> 5
e (IF/ID.Ra==1D/Ex.Rd—-= oc o
<_ IF/ID.Ra==Ex/MRd| | ——F |
IF/ID.Ra==M/W.Rd)| O a o
NJe—

IF/ID ID/EX EX/MEM MEM/WB

Data Hazards

Data Hazards

 register file reads occur in stage 2 (ID)

 register file writes occur in stage 5 (WB)

* next instructions may read values about to be written

How to detect? Logic in ID stage:

stall = (IF/ID.
(

Ra =0 &&

-/ID.Ra == ID/EX.Rd | |
-/ID.Ra == EX/M.Rd | |
-/ID.Ra == M/WB.Rd))

|| (same for Rb)

addr3,rl, r2
subr5, r3, r5
orr6,r3,r4
add r6, r3, r8 +
(B
A
+— +4
T
—>
PC O
N

IF/ID

>
>

Detecting Data Hazards
Rd AP < >
D M) > O 5N\
Bl @}~ l
Ra Rb i addr
m dln dout) 2 _>/
mem
_® €
o o
Q| o
@ O
ID/EX EX/MEM MEM/WB

Takeaway

Data hazards occur when a operand (register) depends on
the result of a previous instruction that may not be
computed yet. A pipelined processor needs to detect data
hazards.

Next Goal
What to do if data hazard detected?

Stalling

How to stall an instruction in ID stage
* prevent IF/ID pipeline register update

— stalls the ID stage instruction

e convert ID stage instr into nop for later stages

— innocuous “bubble” passes through pipeline

* prevent PC update

— stalls the next (IF stage) instruction

addr3,rl, r2
subr5, r3, r5
orr6,r3,r4

add r6, r3, r8

inst

PC+4

Detecting Data Hazards
re A
3> D)] Na) BN
Bl—=| m l
Ra Rb i addr
T T o= dln dout ~ 2 _>/
¥ mem
detect =
hazard Z = =
SEE) E
(T detect ha@}vf o
@) @) @)
MemWr=02
RegWr=0
ID/EX EX/MEM MEM/WB

Clock cycle Sta I I | ng

time
> 1 2 3 4

addr3,rl, r2

sub r5, r3, r5

orre, r3,r4

add r6, r3, r8

time

r3=10

>

addr3,rl, r2

r3 =20

sub r5, r3, r5

orre, r3,r4

add r6, r3, r8

Clock cycle

1

2

3

4

Stalling

IF | ID | Ex | M
|
3 [Stalls x

IF <D | ID | IDDMID |Ex | M |W

IF AE | IF | IEX ID | Ex | M

IF | ID | Ex

inst

A

PC

Stalling

mem P>

inst

I

orro6,r3,r4

data
mem

<

A=l A
(D) D
> D Bl B >
rA rB
(i > B
(MemWr=0 £ <
RegWr=0 = o
N nop o o
Sub rS@rS add(r3r1,r2N4
(WE=0) \\\"'_"'<<:/
/stall

NOP = If(IF/ID.rA # 0 &&
{(F/ID.rA==ID/Ex.Rd >
IF/ID.rA==Ex/M.Rd
IF/ID.rA==M/W.Rd))

Rd

Op || WE

inst

Sta

lling

mem P>

inst

orro6,r3,r4

(WE=0)

/stall
NOP = If(IF/ID.rA # 0 &&

(IF/ID.rA==ID/Ex.Rd

Sub r5,r3,r5 @gp/\<j

JF/ID.rA==Ex/M.Rd_>

IF/ID.rA==M/W.Rd))

A=l A
> D > D l D
> rD Bls{g—
rA rB data
T T > B mem —M
©
(MemWr=0 i i i
RegWr=0) = s s
nop 1 (MemWr=0
N\ O|RegWr=0) |O& o
AYadd r3,r1,r2N4

Stalling

A=l A
>{ D > PID l > D=1
|nSt - * rD B—) B >
mem > & rA rB data
A a T T S B mem —>|\/|—>/
(MemWr=0 = =
PC RegWr=0 = '-';-' '-';-'
nop = (MemWr=0 (MemWr=0
N\ O|RegWr=0) |S| RegWr=0) |O
orr6,r3,r4 | (WE=0)

/stall
NOP = If(IF/ID.rA # 0 &&

(IF/ID.rA==ID/Ex.Rd
IF/ID.rA==Ex/M.Rd

IF/ID.rA==M/WRA>

Stalling

How to stall an instruction in ID stage
* prevent IF/ID pipeline register update

— stalls the ID stage instruction

e convert ID stage instr into nop for later stages

— innocuous “bubble” passes through pipeline

* prevent PC update

— stalls the next (IF stage) instruction

Takeaway

Data hazards occur when a operand (register) depends on
the result of a previous instruction that may not be
computed yet. A pipelined processor needs to detect data
hazards.

Stalling, preventing a dependent instruction from
advancing, is one way to resolve data hazards.

Stalling introduces NOPs (“bubbles”) into a pipeline.
Introduce NOPs by (1) preventing the PC from updating,
(2) preventing writes to IF/ID registers from changing, and
(3) preventing writes to memory and register file.

*Bubbles in pipeline significantly decrease performance.

Next Goal: Resolving Data Hazards via Forwarding

What to do if data hazard detected?
A) Wait/Stall
B) Reorder in Software (SW)

<C) Forward/Bypass >

Forwarding

Forwarding bypasses some pipelined stages
forwarding a result to a dependent instruction

operand (register).

Three types of forwarding/bypass
* Forwarding from Ex/Mem registers to Ex stage (M—Ex)
* Forwarding from Mem/WB register to Ex stage (W—Ex)

* RegisterFile Bypass

Forwarding Datapath

A A >
D > D l > D =\
inst BB 5
mem data
£ > B mem M|,
= =
detect =2
hazard = =
o
@) @)
= =
IF/ID ID/Ex Ex/Mem Mem/WB

Three types of forwarding/bypass
e Forwarding from Ex/Mem registers to Ex stage (M—Ex)

* Forwarding from Mem/WB register to Ex stage (W — Ex)
* RegisterFile Bypass

Forwarding Datapath

inst B
mem (3 data
£ > B mem M|,
detect
hazard

IF/ID

Three types of forwarding/bypass

e Forwarding from Ex/Mem registers to Ex stage (M—Ex)

* Forwarding from Mem/WB register to Ex stage (W — Ex)
* RegisterFile Bypass

Forwarding Datapath 1
Ex/MEM to EX Bypass

 EX needs ALU result that is still in MEM stage
* Resolve:
Add a bypass from EX/MEM.D to start of EX

How to detect? Logic in Ex Stage:
forward = (Ex/M.WE && EX/M.Rd !=0 &&
ID/Ex.Ra == Ex/M.Rd)
|| (same for Rb)

Forwarding Datapath

inst B
mem (3 data
£ > B mem M|,
detect
hazard

IF/ID

Three types of forwarding/bypass

e Forwarding from Ex/Mem registers to Ex stage (M—Ex)

* Forwarding from Mem/WB register to Ex stage (W — Ex)
* RegisterFile Bypass

Forwarding Datapath 1

AP T
== N > ¢ l

. > |

INst Bl —
mem d data

> | mem

addr3,rl, r2

subr5, r3, r1

Forwarding Datapath 2
Mem/WB to EX Bypass

* EX needs value being written by WB
* Resolve:
Add bypass from WB final value to start of EX

How to detect? Logic in Ex Stage:
forward = (M/WB.WE && M/WB.Rd !=0 &&
ID/Ex.Ra == M/WB.Rd &&
not (Ex/M.WE && Ex/M.Rd !=0 &&
ID/Ex.Ra == Ex/M.Rd)

|| (same for Rb)
Check pg. 311

Forwarding Datapath

inst B
mem (3 data
£ > B mem M|,
detect
hazard

IF/ID

Three types of forwarding/bypass

e Forwarding from Ex/Mem registers to Ex stage (M—Ex)

* Forwarding from Mem/WB register to Ex stage (W — Ex)
* RegisterFile Bypass

Forwarding Datapath 2

N
>
A -
== N > ¢ l
inst B | _:/—>
mem N data
> mem

addr3,rl, r2

subr5, r3, r1

orr6,r3, r4

Register File Bypass
Register File Bypass

* Reading a value that is currently being written

Detect:
((Ra == MEM/WB.Rd) or (Rb == MEM/WB.Rd))
and (WB is writing a register)

Resolve:

Add a bypass around register file (WB to ID)

Better: (Hack) just negate register file clock
— writes happen at end of first half of each clock cycle
— reads happen during second half of each clock cycle

Forwarding Datapath

inst B
mem (3 data
£ > B mem M|,
detect
hazard

IF/ID

Three types of forwarding/bypass

e Forwarding from Ex/Mem registers to Ex stage (M—Ex)

* Forwarding from Mem/WB register to Ex stage (W — Ex)
* RegisterFile Bypass

Register File Bypass

inst

mem

addr3,rl, r2

subr5, r3, r1
orr6,r3, r4

add r6, r3, r8

% |/
N > ®
> [l
—)
data
—>
> mem

v

Forwarding Example

- Clock cycle
time > 1 2 3 4 5 6
r3=10
addr3,rl, r2
r3 =20

sub r5, r3, r5

orre, r3,r4

add r6, r3, r8

Forwarding Example 2

Clock cycle
1 2 3 4 5 6

time

addr3, r1,r2| IF | ID |EX | M | W

sub r5, r3, rd IF ID Ex | M W

:

lw r6, 4(r3

orr5,r3,r5

sw r6, 12(r3)
v

Forwarding Datapath

inst B
mem (3 data
£ > B mem M|,
detect
hazard

IF/ID

Three types of forwarding/bypass

e Forwarding from Ex/Mem registers to Ex stage (M—Ex)

* Forwarding from Mem/WB register to Ex stage (W — Ex)
* Register File Bypass

Takeaway

Data hazards occur when a operand (register) depends on the result of
a previous instruction that may not be computed yet. A pipelined
processor needs to detect data hazards.

Stalling, preventing a dependent instruction from advancing, is one way
to resolve data hazards. Stalling introduces NOPs (“bubbles”) into a
pipeline. Introduce NOPs by (1) preventing the PC from updating, (2)
preventing writes to IF/ID registers from changing, and (3) preventing
writes to memory and register file. Bubbles (nops) in pipeline
significantly decrease performance.

Forwarding bypasses some pipelined stages forwarding a result to a
dependent instruction operand (register). Better performance than
stalling.

Data Hazard Recap
Stall

e Pause current and all subsequent instructions

Forward/Bypass
* Try to steal correct value from elsewhere in pipeline
e Otherwise, fall back to stalling or require a delay slot

Tradeoffs?

