
Prof. Hakim Weatherspoon
CS 3410, Spring 2015

Computer Science
Cornell University

See P&H Chapter: 1.6, 4.5-4.6

HW 1
Quite long. Do not wait till the end.

Project 1 design doc
Critical to do this, else Project 1 will be hard

HW 1 review session
Wed (2/18) @ 7:30pm and Sun (2/22) @ 5:00pm
Locations: Both in Upson B17

Prelim 1 review session
Next Tue (2/24) and Sun(2/28). 7:30pm.
Location: Olin 255 and Upson B17, respectively.

Performance
• What is performance?
• How to get it?

Pipelining

Complex question
• How fast is the processor?
• How fast your application runs?
• How quickly does it respond to you?
• How fast can you process a big batch of jobs?
• How much power does your machine use?

Clock speed
• 1 MHz, 106 Hz: cycle is 1 microsecond (10-6)
• 1 Ghz, 109 Hz: cycle is 1 nanosecond (10-9)
• 1 Thz, 1012 Hz: cycle is 1 picosecond (10-12)

Instruction/application performance
• MIPs (Millions of instructions per second)
• FLOPs (Floating point instructions per second)

• GPUs: GeForce GTX Titan (2,688 cores, 4.5 Tera flops, 7.1 billion
transistors, 42 Gigapixel/sec fill rate, 288 GB/sec)

• Benchmarks (SPEC)

Latency
• How long to finish my program

– Response time, elapsed time, wall clock time
– CPU time: user and system time

Throughput
• How much work finished per unit time

Ideal: Want high throughput, low latency
… also, low power, cheap ($$) etc.

Decrease latency
Critical Path

• Longest path determining the minimum time needed
for an operation

• Determines minimum length of clock cycle
i.e. determins maximum clock frequency

Optimize for delay on the critical path
– Parallelism (like carry look ahead adder)
– Pipelining
– Both

E.g. Adder performance

32 Bit Adder Design Space Time
Ripple Carry ≈ 300 gates ≈ 64 gate delays
2-Way Carry-Skip ≈ 360 gates ≈ 35 gate delays
3-Way Carry-Skip ≈ 500 gates ≈ 22 gate delays
4-Way Carry-Skip ≈ 600 gates ≈ 18 gate delays
2-Way Look-Ahead ≈ 550 gates ≈ 16 gate delays
Split Look-Ahead ≈ 800 gates ≈ 10 gate delays
Full Look-Ahead ≈ 1200 gates ≈ 5 gate delays

But what to do when operations take diff. times?
E.g: Assume:

• load/store: 100 ns
• arithmetic: 50 ns
• branches: 33 ns

Single-Cycle CPU
10 MHz (100 ns cycle) with

– 1 cycle per instruction

ms = 10-3 second
us = 10-6 seconds
ns = 10-9 seconds

10 MHz

20 MHz

30 MHz

Multiple cycles to complete a single instruction
E.g: Assume:

• load/store: 100 ns
• arithmetic: 50 ns
• branches: 33 ns

Multi-Cycle CPU
30 MHz (33 ns cycle) with

• 3 cycles per load/store
• 2 cycles per arithmetic
• 1 cycle per branch

ms = 10-3 second
us = 10-6 seconds
ns = 10-9 seconds

10 MHz

20 MHz

30 MHz

Single-Cycle CPU
10 MHz (100 ns cycle) with

– 1 cycle per instruction

Instruction mix for some program P, assume:
• 25% load/store (3 cycles / instruction)
• 60% arithmetic (2 cycles / instruction)
• 15% branches (1 cycle / instruction)

Multi-Cycle performance for program P:

Multi-Cycle @ 30 MHz

Single-Cycle @ 10 MHz

CPU Time = # Instructions x CPI x Clock Cycle Time

E.g. Say for a program with 400k instructions, 30 MHz:
CPU [Execution] Time = ?

= Instr x cycles/instr x seconds/cycle

Goal: Make Multi-Cycle @ 30 MHz CPU (15MIPS) run
2x faster by making arithmetic instructions faster

Instruction mix (for P):
• 25% load/store, CPI = 3
• 60% arithmetic, CPI = 2
• 15% branches, CPI = 1

Amdahl’s Law
Execution time after improvement =

Or: Speedup is limited by popularity of improved feature

Corollary: Make the common case fast
Caveat: Law of diminishing returns

execution time affected by improvement
amount of improvement

+ execution time unaffected

alu

PC

imm

memory

memory

din dout

addr

target

offset cmpcontrol

=?

new
pc

register
file

inst

extend

+4 +4

Advantages
• Single cycle per instruction make logic and clock simple

Disadvantages
• Since instructions take different time to finish, memory

and functional unit are not efficiently utilized
• Cycle time is the longest delay

– Load instruction

• Best possible CPI is 1 (actually < 1 w parallelism)
– However, lower MIPS and longer clock period (lower clock

frequency); hence, lower performance

Advantages
• Better MIPS and smaller clock period (higher clock

frequency)
• Hence, better performance than Single Cycle

processor

Disadvantages
• Higher CPI than single cycle processor

Pipelining: Want better Performance
• want small CPI (close to 1) with high MIPS and short

clock period (high clock frequency)

Parallelism

Pipelining

Both!

Single Cycle vs Pipelined Processor

See: P&H Chapter 4.5

Alice

Bob

They don’t always get along…

Saw Drill

Glue Paint

N pieces, each built following same sequence:

Saw Drill Glue Paint

Alice owns the room
Bob can enter when Alice is finished
Repeat for remaining tasks
No possibility for conflicts

Elapsed Time for Alice: 4
Elapsed Time for Bob: 4
Total elapsed time: 4*N
Can we do better?

time
1 2 3 4 5 6 7 8 …

Latency:
Throughput:
Concurrency:

CPI =

Partition room into stages of a pipeline

AliceBobCarolDave

One person owns a stage at a time
4 stages
4 people working simultaneously
Everyone moves right in lockstep
It still takes all four stages for one job to complete

time
1 2 3 4 5 6 7…

Latency:
Throughput:
Concurrency:

Time
1 2 3 4 5 6 7 8 9 10

Latency:
Throughput: CPI =

What if drilling takes twice as long, but gluing and paint take ½ as long?

Principle:
Throughput increased by parallel execution
Balanced pipeline very important

Else slowest stage dominates performance

Pipelining:
• Identify pipeline stages
• Isolate stages from each other
• Resolve pipeline hazards (next lecture)

• Instructions same length
• 32 bits, easy to fetch and then decode

• 3 types of instruction formats
• Easy to route bits between stages
• Can read a register source before even knowing

what the instruction is

• Memory access through lw and sw only
• Access memory after ALU

Five stage “RISC” load-store architecture

1. Instruction fetch (IF)
– get instruction from memory, increment PC

2. Instruction Decode (ID)
– translate opcode into control signals and read registers

3. Execute (EX)
– perform ALU operation, compute jump/branch targets

4. Memory (MEM)
– access memory if needed

5. Writeback (WB)
– update register file

alu

PC

imm

memory

memory

din dout

addr

target

offset cmpcontrol

=?

new
pc

register
file

inst

extend

+4 +4

Review: Single cycle processor

Write-
BackMemory

Instruction
Fetch Execute

Instruction
Decode

register
file

control

alu

imm

memory

din dout

addr

inst

PC

memory

compute
jump/branch

targets

new
pc

+4

extend

1 2 3 4 5 6 7 8 9
Clock cycle

Latency:
Throughput:
Concurrency:

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

add

lw

Break instructions across multiple clock cycles
(five, in this case)

Design a separate stage for the execution
performed during each clock cycle

Add pipeline registers (flip-flops) to isolate signals
between different stages

Write-
BackMemory

Instruction
Fetch Execute

Instruction
Decode

extend

register
file

control

alu

memory

din dout

addr
PC

memory

new
pc

in
st

IF/ID ID/EX EX/MEM MEM/WB

im
m

B
A

ct
rl

ct
rl

ct
rl

B
D D

M

compute
jump/branch

targets

+4

Stage 1: Instruction Fetch

Fetch a new instruction every cycle
• Current PC is index to instruction memory
• Increment the PC at end of cycle (assume no branches for

now)

Write values of interest to pipeline register (IF/ID)
• Instruction bits (for later decoding)
• PC+4 (for later computing branch targets)

PC

instruction
memory

new
pc

addr mc

+4 in
st

IF/ID

Re
st

 o
f p

ip
el

in
e

PC
+4

Stage 2: Instruction Decode

On every cycle:
• Read IF/ID pipeline register to get instruction bits
• Decode instruction, generate control signals
• Read from register file

Write values of interest to pipeline register (ID/EX)
• Control information, Rd index, immediates, offsets, …
• Contents of Ra, Rb
• PC+4 (for computing branch targets later)

ct
rl

ID/EX

Re
st

 o
f p

ip
el

in
e

PC
+4

in
st

IF/ID

PC
+4

St
ag

e
1:

 In
st

ru
ct

io
n

Fe
tc

h

register
file

WE
Rd

Ra Rb

D
B

A

B
A

im
m

Stage 3: Execute

On every cycle:
• Read ID/EX pipeline register to get values and control bits
• Perform ALU operation
• Compute targets (PC+4+offset, etc.) in case this is a branch
• Decide if jump/branch should be taken

Write values of interest to pipeline register (EX/MEM)
• Control information, Rd index, …
• Result of ALU operation
• Value in case this is a memory store instruction

St
ag

e
2:

 In
st

ru
ct

io
n

De
co

de

ct
rl

EX/MEM

Re
st

 o
f p

ip
el

in
e

B
D

ct
rl

ID/EX

PC
+4

B
A

alu

im
m

ta
rg

et

Stage 4: Memory

On every cycle:
• Read EX/MEM pipeline register to get values and control bits
• Perform memory load/store if needed

– address is ALU result

Write values of interest to pipeline register (MEM/WB)
• Control information, Rd index, …
• Result of memory operation
• Pass result of ALU operation

ct
rl

MEM/WB

Re
st

 o
f p

ip
el

in
e

St
ag

e
3:

 E
xe

cu
te

M
D

ct
rl

EX/MEM

B
D

memory

din dout

addr

mcta
rg

et

Stage 5: Write-back

On every cycle:
• Read MEM/WB pipeline register to get values and control bits
• Select value and write to register file

St
ag

e
4:

 M
em

or
y

ct
rl

MEM/WB

M
D

IF/ID

+4

ID/EX EX/MEM MEM/WB

mem

din dout

addrin
st

PC
+4

O
P

B
A

Rt

B
D

M
D

PC
+4

im
m

O
P

Rd

O
P

Rd

PC

inst
mem

Rd

Ra Rb

D
B

A

Rd

Pipelining is a powerful technique to mask
latencies and increase throughput

• Logically, instructions execute one at a time
• Physically, instructions execute in parallel

– Instruction level parallelism

Abstraction promotes decoupling
• Interface (ISA) vs. implementation (Pipeline)

	Performance and Pipelining
	Announcements
	Goals for today
	Performance
	Measures of Performance
	Measures of Performance
	How to make the computer faster?
	Latency: Optimize Delay on Critical Path
	Multi-Cycle Instructions
	Multi-Cycle Instructions
	Cycles Per Instruction (CPI)
	Total Time
	Example
	Amdahl’s Law
	Review: Single Cycle Processor
	Review: Single Cycle Processor
	Review: Multi Cycle Processor
	Improving Performance
	Slide Number 19
	The Kids
	The Bicycle
	The Materials
	The Instructions
	Design 1: Sequential Schedule
	Sequential Performance
	Design 2: Pipelined Design
	Pipelined Performance
	Pipelined Performance
	Lessons
	MIPs designed for pipelining
	Basic Pipeline
	A Processor
	A Processor
	Time Graphs
	Principles of Pipelined Implementation
	Pipelined Processor
	IF
	IF
	ID
	ID
	EX
	EX
	MEM
	MEM
	WB
	WB
	Slide Number 47
	Pipelining Recap

