
Prof. Hakim Weatherspoon
CS 3410, Spring 2015

Computer Science
Cornell University

See P&H Chapter: 1.6, 4.5-4.6

HW 1
Quite long. Do not wait till the end.

Project 1 design doc
Critical to do this, else Project 1 will be hard

HW 1 review session
Wed (2/18) @ 7:30pm and Sun (2/22) @ 5:00pm
Locations: Both in Upson B17

Prelim 1 review session
Next Tue (2/24) and Sun(2/28). 7:30pm.
Location: Olin 255 and Upson B17, respectively.

Performance
• What is performance?
• How to get it?

Pipelining

Complex question
• How fast is the processor?
• How fast your application runs?
• How quickly does it respond to you?
• How fast can you process a big batch of jobs?
• How much power does your machine use?

Clock speed
• 1 KHz, 103 Hz: cycle is 1 millisecond, ms, (10-6)
• 1 MHz, 106 Hz: cycle is 1 microsecond, us, (10-6)
• 1 Ghz, 109 Hz: cycle is 1 nanosecond, ns, (10-9)
• 1 Thz, 1012 Hz: cycle is 1 picosecond, ps, (10-12)

Instruction/application performance
• MIPs (Millions of instructions per second)
• FLOPs (Floating point instructions per second)

• GPUs: GeForce GTX Titan (2,688 cores, 4.5 Tera flops, 7.1 billion
transistors, 42 Gigapixel/sec fill rate, 288 GB/sec)

• Benchmarks (SPEC)

Latency
• How long to finish my program

– Response time, elapsed time, wall clock time
– CPU time: user and system time

Throughput
• How much work finished per unit time

Ideal: Want high throughput, low latency
… also, low power, cheap ($$) etc.

Decrease latency
Critical Path

• Longest path determining the minimum time needed
for an operation

• Determines minimum length of clock cycle
i.e. determines maximum clock frequency

Optimize for latency on the critical path
– Parallelism (like carry look ahead adder)
– Pipelining
– Both

E.g. Adder performance

32 Bit Adder Design Space Time
Ripple Carry ≈ 300 gates ≈ 64 gate delays
2-Way Carry-Skip ≈ 360 gates ≈ 35 gate delays
3-Way Carry-Skip ≈ 500 gates ≈ 22 gate delays
4-Way Carry-Skip ≈ 600 gates ≈ 18 gate delays
2-Way Look-Ahead ≈ 550 gates ≈ 16 gate delays
Split Look-Ahead ≈ 800 gates ≈ 10 gate delays
Full Look-Ahead ≈ 1200 gates ≈ 5 gate delays

But what to do when operations take diff. times?
E.g: Assume:

• load/store: 100 ns
• arithmetic: 50 ns
• branches: 33 ns

Single-Cycle CPU
10 MHz (100 ns cycle) with

– 1 cycle per instruction

ms = 10-3 second
us = 10-6 seconds
ns = 10-9 seconds
ps = 10-12 seconds

10 MHz

20 MHz

30 MHz

Multiple cycles to complete a single instruction
E.g: Assume:

• load/store: 100 ns
• arithmetic: 50 ns
• branches: 33 ns

Multi-Cycle CPU
30 MHz (33 ns cycle) with

• 3 cycles per load/store
• 2 cycles per arithmetic
• 1 cycle per branch

ms = 10-3 second
us = 10-6 seconds
ns = 10-9 seconds
ps = 10-12 seconds

10 MHz

20 MHz

30 MHz

Single-Cycle CPU
10 MHz (100 ns cycle) with

– 1 cycle per instruction

Which one is faster: Single- or Multi-Cycle CPU?

Instruction mix for some program P, assume:
• 25% load/store (3 cycles / instruction)
• 60% arithmetic (2 cycles / instruction)
• 15% branches (1 cycle / instruction)

Multi-Cycle performance for program P:
3 * .25 + 2 * .60 + 1 * .15 = 2.1
average cycles per instruction (CPI) = 2.1

Multi-Cycle @ 30 MHz

Single-Cycle @ 10 MHz

30M cycles/sec ÷2.1 cycles/instr ≈15 MIPS
vs
10 MIPS

MIPS = millions of instructions per second

= 10M cycles/sec ÷ 1 cycle/instr

CPU Time = # Instructions x CPI x Clock Cycle Time

E.g. Say for a program with 400k instructions, 30 MHz:
CPU [Execution] Time = ?

= Instr x cycles/instr x seconds/cycle

CPU Time = # Instructions x CPI x Clock Cycle Time

E.g. Say for a program with 400k instructions, 30 MHz:
CPU [Execution] Time = 400k x 2.1 x 33 ns = 27 ms

= Instr x cycles/instr x seconds/cycle

CPU Time = # Instructions x CPI x Clock Cycle Time

E.g. Say for a program with 400k instructions, 30 MHz:
CPU [Execution] Time = 400k x 2.1 x 33 ns = 27 ms

How do we increase performance?
• Need to reduce CPU time

 Reduce #instructions
 Reduce CPI
 Reduce Clock Cycle Time

= Instr x cycles/instr x seconds/cycle

Goal: Make Multi-Cycle @ 30 MHz CPU (15MIPS) run 2x
faster by making arithmetic instructions faster

Instruction mix (for P):
• 25% load/store, CPI = 3
• 60% arithmetic, CPI = 2
• 15% branches, CPI = 1

CPI = 0.25 x 3 + 0.6 x 2 + 0.15 x 1
= 2.1

Goal: Make processor run 2x faster,
i.e. 30 MIPS instead of 15 MIPS

Goal: Make Multi-Cycle @ 30 MHz CPU (15MIPS) run 2x
faster by making arithmetic instructions faster

Instruction mix (for P):
• 25% load/store, CPI = 3
• 60% arithmetic, CPI = 2 1
• 15% branches, CPI = 1

First lets try CPI of 1 for arithmetic.
Is that 2x faster overall?
How much does it improve performance?

CPI = 0.25 x 3 + 0.6 x 1 + 0.15 x 1
= 1.5

No

Goal: Make Multi-Cycle @ 30 MHz CPU (15MIPS) run 2x
faster by making arithmetic instructions faster

Instruction mix (for P):
• 25% load/store, CPI = 3
• 60% arithmetic, CPI = 2 X
• 15% branches, CPI = 1

But, want to half our CPI from 2.1 to 1.05.
Let new arithmetic operation have a CPI of X. X =?
Then, X = 0.25, which is a significant improvement

CPI = 1.05 = 0.25 x 3 + 0.6 x X + 0.15 x 1
1.05 = .75 + 0.6X + 0.15

X = 0.25

Goal: Make Multi-Cycle @ 30 MHz CPU (15MIPS) run 2x
faster by making arithmetic instructions faster

Instruction mix (for P):
• 25% load/store, CPI = 3
• 60% arithmetic, CPI = 2 0.25
• 15% branches, CPI = 1

To double performance CPI for arithmetic operations
have to go from 2 to 0.25

Amdahl’s Law
Execution time after improvement =

Or: Speedup is limited by popularity of improved feature

Corollary: Make the common case fast
Caveat: Law of diminishing returns

execution time affected by improvement
amount of improvement

+ execution time unaffected

alu

PC

imm

memory

memory

din dout

addr

target

offset cmpcontrol

=?

new
pc

register
file

inst

extend

+4 +4

Advantages
• Single cycle per instruction make logic and clock simple

Disadvantages
• Since instructions take different time to finish, memory

and functional unit are not efficiently utilized
• Cycle time is the longest delay

– Load instruction

• Best possible CPI is 1 (actually < 1 w parallelism)
– However, lower MIPS and longer clock period (lower clock

frequency); hence, lower performance

Advantages
• Better MIPS and smaller clock period (higher clock

frequency)
• Hence, better performance than Single Cycle

processor

Disadvantages
• Higher CPI than single cycle processor

Pipelining: Want better Performance
• want small CPI (close to 1) with high MIPS and short

clock period (high clock frequency)

Parallelism

Pipelining

Both!

Single Cycle vs Pipelined Processor

See: P&H Chapter 4.5

Alice

Bob

They don’t always get along…

Saw Drill

Glue Paint

N pieces, each built following same sequence:

Saw Drill Glue Paint

Alice owns the room
Bob can enter when Alice is finished
Repeat for remaining tasks
No possibility for conflicts

Elapsed Time for Alice: 4
Elapsed Time for Bob: 4
Total elapsed time: 4*N
Can we do better?

time
1 2 3 4 5 6 7 8 …

Latency:
Throughput:
Concurrency:

CPI =

Latency: 4 hours/task
Throughput: 1 task/4 hrs
Concurrency: 1

CPI = 4

Partition room into stages of a pipeline

One person owns a stage at a time
4 stages
4 people working simultaneously
Everyone moves right in lockstep

AliceBobCarolDave

Partition room into stages of a pipeline

Alice

One person owns a stage at a time
4 stages
4 people working simultaneously
Everyone moves right in lockstep
It still takes all four stages for one job to complete

Partition room into stages of a pipeline

AliceBob

One person owns a stage at a time
4 stages
4 people working simultaneously
Everyone moves right in lockstep
It still takes all four stages for one job to complete

Partition room into stages of a pipeline

AliceBobCarol

One person owns a stage at a time
4 stages
4 people working simultaneously
Everyone moves right in lockstep
It still takes all four stages for one job to complete

Partition room into stages of a pipeline

AliceBobCarolDave

One person owns a stage at a time
4 stages
4 people working simultaneously
Everyone moves right in lockstep
It still takes all four stages for one job to complete

Partition room into stages of a pipeline

AliceAliceAliceAlice

One person owns a stage at a time
4 stages
4 people working simultaneously
Everyone moves right in lockstep
It still takes all four stages for one job to complete

time
1 2 3 4 5 6 7…

Latency:
Throughput:
Concurrency:

Latency: 4 hrs/task
Throughput: 1 task/hr
Concurrency: 4 CPI = 1

Time
1 2 3 4 5 6 7 8 9 10

Latency:
Throughput: CPI =

What if drilling takes twice as long, but gluing and paint take ½ as long?

Time
1 2 3 4 5 6 7 8 9 10

Latency: 4 cycles/task
Throughput: 1 task/2 cycles

Done: 4 cycles

Done: 6 cycles

CPI = 2
Latency:
Throughput: CPI =

What if drilling takes twice as long, but gluing and paint take ½ as long?

Done: 8 cycles

Principle:
Throughput increased by parallel execution
Balanced pipeline very important

Else slowest stage dominates performance

Pipelining:
• Identify pipeline stages
• Isolate stages from each other
• Resolve pipeline hazards (next lecture)

• Instructions same length
• 32 bits, easy to fetch and then decode

• 3 types of instruction formats
• Easy to route bits between stages
• Can read a register source before even knowing

what the instruction is

• Memory access through lw and sw only
• Access memory after ALU

Five stage “RISC” load-store architecture

1. Instruction fetch (IF)
– get instruction from memory, increment PC

2. Instruction Decode (ID)
– translate opcode into control signals and read registers

3. Execute (EX)
– perform ALU operation, compute jump/branch targets

4. Memory (MEM)
– access memory if needed

5. Writeback (WB)
– update register file

alu

PC

imm

memory

memory

din dout

addr

target

offset cmpcontrol

=?

new
pc

register
file

inst

extend

+4 +4

Review: Single cycle processor

Write-
BackMemory

Instruction
Fetch Execute

Instruction
Decode

register
file

control

alu

imm

memory

din dout

addr

inst

PC

memory

compute
jump/branch

targets

new
pc

+4

extend

1 2 3 4 5 6 7 8 9
Clock cycle

Latency:
Throughput:
Concurrency:

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

Latency: 5 cycles
Throughput: 1 instr/cycle
Concurrency: 5 CPI = 1

add

lw

Break instructions across multiple clock cycles
(five, in this case)

Design a separate stage for the execution
performed during each clock cycle

Add pipeline registers (flip-flops) to isolate signals
between different stages

Write-
BackMemory

Instruction
Fetch Execute

Instruction
Decode

extend

register
file

control

alu

memory

din dout

addr
PC

memory

new
pc

in
st

IF/ID ID/EX EX/MEM MEM/WB

im
m

B
A

ct
rl

ct
rl

ct
rl

B
D D

M

compute
jump/branch

targets

+4

Stage 1: Instruction Fetch

Fetch a new instruction every cycle
• Current PC is index to instruction memory
• Increment the PC at end of cycle (assume no branches for

now)

Write values of interest to pipeline register (IF/ID)
• Instruction bits (for later decoding)
• PC+4 (for later computing branch targets)

PC

instruction
memory

new
pc

addr mc

+4

- PC+4
- pcrel (PC-relative); e.g. BEQ, BNE
- pcabs (PC absolute); e.g. J and JAL

. (PC+4)31..28 • target • 00
- pcreg (PC registers); e.g. JR

PC

instruction
memory

new
pc

in
st

addr mc

00 = read word

IF/ID

Re
st

 o
f p

ip
el

in
e

+4

PC
+4

pcsel

pcreg
pcrel

pcabs

Stage 2: Instruction Decode

On every cycle:
• Read IF/ID pipeline register to get instruction bits
• Decode instruction, generate control signals
• Read from register file

Write values of interest to pipeline register (ID/EX)
• Control information, Rd index, immediates, offsets, …
• Contents of Ra, Rb
• PC+4 (for computing branch targets later)

ct
rl

ID/EX

Re
st

 o
f p

ip
el

in
e

PC
+4

in
st

IF/ID

PC
+4

St
ag

e
1:

 In
st

ru
ct

io
n

Fe
tc

h

register
file

WE
Rd

Ra Rb

D
B

A

B
A

im
m

ct
rl

ID/EX

Re
st

 o
f p

ip
el

in
e

PC
+4

in
st

IF/ID

PC
+4

St
ag

e
1:

 In
st

ru
ct

io
n

Fe
tc

h

register
file

WE
Rd

Ra Rb

D
B

A

B
A

extend im
m

decode

result

dest

Stage 3: Execute

On every cycle:
• Read ID/EX pipeline register to get values and control bits
• Perform ALU operation
• Compute targets (PC+4+offset, etc.) in case this is a branch
• Decide if jump/branch should be taken

Write values of interest to pipeline register (EX/MEM)
• Control information, Rd index, …
• Result of ALU operation
• Value in case this is a memory store instruction

St
ag

e
2:

 In
st

ru
ct

io
n

De
co

de

ct
rl

EX/MEM

Re
st

 o
f p

ip
el

in
e

B
D

ct
rl

ID/EX

PC
+4

B
A

alu

im
m

ta
rg

et

St
ag

e
2:

 In
st

ru
ct

io
n

De
co

de

pcrel

pcabs

ct
rl

EX/MEM

Re
st

 o
f p

ip
el

in
e

B
D

ct
rl

ID/EX

PC
+4

B
A

alu

+



branch?

im
m

pcsel
pcreg

ta
rg

et

Stage 4: Memory

On every cycle:
• Read EX/MEM pipeline register to get values and control bits
• Perform memory load/store if needed

– address is ALU result

Write values of interest to pipeline register (MEM/WB)
• Control information, Rd index, …
• Result of memory operation
• Pass result of ALU operation

ct
rl

MEM/WB

Re
st

 o
f p

ip
el

in
e

St
ag

e
3:

 E
xe

cu
te

M
D

ct
rl

EX/MEM

B
D

memory

din dout

addr

mcta
rg

et

ct
rl

MEM/WB

Re
st

 o
f p

ip
el

in
e

St
ag

e
3:

 E
xe

cu
te

M
D

ct
rl

EX/MEM

B
D

memory

din dout

addr

mcta
rg

et

branch?pcsel

pcrel

pcabs

pcreg

Stage 5: Write-back

On every cycle:
• Read MEM/WB pipeline register to get values and control bits
• Select value and write to register file

St
ag

e
4:

 M
em

or
y

ct
rl

MEM/WB

M
D

St
ag

e
4:

 M
em

or
y

ct
rl

MEM/WB

M
D

result

dest

IF/ID

+4

ID/EX EX/MEM MEM/WB

mem

din dout

addrin
st

PC
+4

O
P

B
A

Rt

B
D

M
D

PC
+4

im
m

O
P

Rd

O
P

Rd

PC

inst
mem

Rd

Ra Rb

D
B

A

Rd

Pipelining is a powerful technique to mask
latencies and increase throughput

• Logically, instructions execute one at a time
• Physically, instructions execute in parallel

– Instruction level parallelism

Abstraction promotes decoupling
• Interface (ISA) vs. implementation (Pipeline)

	Performance and Pipelining
	Slide Number 2
	Announcements
	Goals for today
	Performance
	Measures of Performance
	Measures of Performance
	How to make the computer faster?
	Latency: Optimize Delay on Critical Path
	Multi-Cycle Instructions
	Multi-Cycle Instructions
	Cycles Per Instruction (CPI)
	Total Time
	Total Time
	Total Time
	Example
	Example
	Example
	Example
	Amdahl’s Law
	Review: Single Cycle Processor
	Review: Single Cycle Processor
	Review: Multi Cycle Processor
	Improving Performance
	Slide Number 25
	The Kids
	The Bicycle
	The Materials
	The Instructions
	Design 1: Sequential Schedule
	Sequential Performance
	Design 2: Pipelined Design
	Design 2: Pipelined Design
	Design 2: Pipelined Design
	Design 2: Pipelined Design
	Design 2: Pipelined Design
	Design 2: Pipelined Design
	Pipelined Performance
	Pipelined Performance
	Pipelined Performance
	Lessons
	MIPs designed for pipelining
	Basic Pipeline
	A Processor
	A Processor
	Time Graphs
	Principles of Pipelined Implementation
	Pipelined Processor
	IF
	IF
	IF
	ID
	ID
	ID
	EX
	EX
	EX
	MEM
	MEM
	MEM
	WB
	WB
	WB
	Slide Number 65
	Pipelining Recap

