Performance and Pipelining

Prof. Hakim Weatherspoon
CS 3410, Spring 2015
Computer Science
Cornell University
See P&H Chapter: 1.6, 4.5-4.6

That's it. We surrender. Winter, you win. Key West anyona?

Do b Hr o bowssly stupld) winber, hacs invties you o vl The Florida Keys ths wosk . Plosss come hack whsn Bengs B ol
IRmally, i for the brds hare now. (S8 want io Viell Bhucr? Are you surs? O, click hors.)
PS5 Sand us 8 pestoard,

|
FFlorida Keys

2 |'i'.r.=._1_.""‘j~_"',-f:":: SLE

Announcements

HW 1
Quite long. Do not wait till the end.
Project 1 desigh doc
Critical to do this, else Project 1 will be hard

HW 1 review session
Wed (2/18) @ 7:30pm and Sun (2/22) @ 5:00pm
Locations: Both in Upson B17

Prelim 1 review session
Next Tue (2/24) and Sun(2/28). 7:30pm.
Location: Olin 255 and Upson B17, respectively.

Goals for today

Performance
* What is performance?
e How to get it?

Pipelining

Performance

Complex question

ow fast is the processor?

ow fast your application runs?

ow quickly does it respond to you?

ow fast can you process a big batch of jobs?

ow much power does your machine use?

Measures of Performance

Clock speed
e 1 KHz, 103 Hz: cycle is 1 millisecond, ms, (10°)
1 MHz, 10° Hz: cycle is 1 microsecond, us, (107°)
e 1 Ghz, 10° Hz: cycle is 1 nanosecond, ns, (10)

 1Thz, 10*? Hz: cycle is 1 picosecond, ps, (101?)

Instruction/application performance
 MIPs (Millions of instructions per second)

 FLOPs (Floating point instructions per second)

e GPUs: GeForce GTX Titan (2,688 cores, 4.5 Tera flops, 7.1 billion
transistors, 42 Gigapixel/sec fill rate, 288 GB/sec)

e Benchmarks (SPEC)

Measures of Performance

Latency

* How long to finish my program
— Response time, elapsed time, wall clock time
— CPU time: user and system time

Throughput

* How much work finished per unit time

ldeal: Want high throughput, low latency
... also, low power, cheap (SS) etc.

How to make the computer faster?

Decrease latency
Critical Path

e Longest path determining the minimum time needed
for an operation

 Determines minimum length of clock cycle
i.e. determines maximum clock frequency

Optimize for latency on the critical path
— Parallelism (like carry look ahead adder)
—Pipelining
—Both

Latency: Optimize Delay on Critical Path

E.g. Adder performance

32 Bit Adder Design Space Time

2-Way Carry-Skip = 360 gates = 35 gate delays

4-Way Carry-Skip = 600 gates = 18 gate delays

Split Look-Ahead = 800 gates = 10 gate delays

Multi-Cycle Instructions
But what to do when operations take diff. times?

E.g: Assume:
e load/store: 100 ns.__ 10 MHz
e arithmetic: 50 ns __ 20 MHz
 branches:33ns <« 30MHz

Single-Cycle CPU
10 MHz (100 ns cycle) with

— 1 cycle per instruction

ms = 103 second
us = 10° seconds
ns = 10~ seconds
ps = 10?2 seconds

Multi-Cycle Instructions
Multiple cycles to complete a single instruction

E.g: Assume:
e load/store: 100 ns 10 MHz ms = 103 second
us = 10® seconds
o i ic: 20 MH
arithmetic:50ns . z s = 109 seconds
e branches: 33 ns <« 30 MHz ps = 1012 seconds

Which one is faster: Single- or Multi-Cycle CPU?

Single-Cycle CPU Multi-Cycle CPU
10 MHz (100 ns cycle) with 30 MHz (33 ns cycle) with

e 3 cycles per load/store
e 2 cycles per arithmetic
e 1 cycle per branch

— 1 cycle per instruction

Cycles Per Instruction (CPI)

Instruction mix for some program P, assume:
e 25% load/store (3 cycles / instruction)
e 60% arithmetic (2 cycles / instruction)
e 15% branches (1 cycle /instruction)

Multi-Cycle performance for program P:
3*.25+2*60+1%*.15=2.1
average cycles per instruction (CPl) = 2.1

Multi-Cycle @ 30 MHz<— 30M cycles/sec +2.1 cycles/instr

VS
Single—CycIe @ 10 MHz = 10M cycles/sec + 1 cycle/instr

MIPS = millions of instructions per second

Total Time
[CPU Time = # Instructions x CPI x Clock Cycle Time J

= Instr x cycles/instr x seconds/cycle

E.g. Say for a program with 400k instructions, 30 MHz:
CPU [Execution] Time =7

Total Time
[CPU Time = # Instructions x CPI x Clock Cycle Time J

= Instr x cycles/instr x seconds/cycle

E.g. Say for a program with 400k instructions, 30 MHz:
CPU [Execution] Time =400k x 2.1 x33 ns=27 ms

Total Time
[CPU Time = # Instructions x CPI x Clock Cycle Time J

= Instr x cycles/instr x seconds/cycle

E.g. Say for a program with 400k instructions, 30 MHz:
CPU [Execution] Time =400k x 2.1 x33 ns=27 ms

How do we increase performance?
* Need to reduce CPU time

= Reduce #instructions

= Reduce CPI
= Reduce Clock Cycle Time

Example

Goal: Make Multi-Cycle @ 30 MHz CPU (15MIPS) run 2x
faster by making arithmetic instructions faster

Instruction mix (for P):
e 25% load/store, CPI =3
e 60% arithmetic, CPl =2
e 15% branches, CPlI=1
CPI=0.25x3+0.6x2+0.15x1

=2.1

Goal: Make processor run 2x faster,
i.e. 30 MIPS instead of 15 MIPS

Example

Goal: Make Multi-Cycle @ 30 MHz CPU (15MIPS) run 2x
faster by making arithmetic instructions faster

Instruction mix (for P):
e 25% load/store, CPI =3
e 60% arithmetic, CPI=21

e 15% branches, CPlI=1
CPI=0.25x3+0.6x1+0.15x1

First lets try CPI of 1 for arithmetic.
Is that 2x faster overall? No
How much does it improve performance?

Example

Goal: Make Multi-Cycle @ 30 MHz CPU (15MIPS) run 2x
faster by making arithmetic instructions faster

Instruction mix (for P):
e 25% load/store, CPI =3
e 60% arithmetic, CPI =2 X

e 15% branches, CPlI=1
CPI=1.05=0.25x3+0.6xX+0.15x1

1.05=.75+0.6X+0.15

X=0.25
But, want to half our CPIl from 2.1 to 1.05.
Let new arithmetic operation have a CPl of X. X =7

Then, X = 0.25, which is a significant improvement

Example

Goal: Make Multi-Cycle @ 30 MHz CPU (15MIPS) run 2x
faster by making arithmetic instructions faster

Instruction mix (for P):
e 25% load/store, CPI =3
e 60% arithmetic, CPI =20.25
e 15% branches, CPlI=1

To double performance CPI for arithmetic operations
have to go from 2 to 0.25

Amdahl’s Law
Amdahl’s Law

Execution time after improvement =
execution time affected by improvement

. + execution time unaffected
amount of improvement

Or: Speedup is limited by popularity of improved feature

Corollary: Make the common case fast
Caveat: Law of diminishing returns

Review: Single Cycle Processor

inst ! g
memory register > Alu
»ﬂ file) ‘
. . Sfe— | ‘:'] addr
= <—e
PC q din dout B
offset control cmp I
target
imm
\—> extend

Review: Single Cycle Processor
Advantages

* Single cycle per instruction make logic and clock simple

Disadvantages

e Since instructions take different time to finish, memory
and functional unit are not efficiently utilized

e Cycle time is the longest delay

— Load instruction

e Best possible CPlis 1 (actually < 1 w parallelism)

— However, lower MIPS and longer clock period (lower clock
frequency); hence, lower performance

Review: Multi Cycle Processor

Advantages

e Better MIPS and smaller clock period (higher clock
frequency)

* Hence, better performance than Single Cycle
processor

Disadvantages

e Higher CPI than single cycle processor

Pipelining: Want better Performance

e want small CPI (close to 1) with high MIPS and short
clock period (high clock frequency)

Improving Performance

Parallelism
Pipelining

Both!

Single Cycle vs Pipelined Processor

See: P&H Chapter 4.5

The Kids

Alice

Bob

They don’t always get along...

S

(S A

The Bicycle

The Materials

Glue Paint

The Instructions
N pieces, each built following same sequence:

Design 1: Sequential Schedule

Alice owns the room

Bob can enter when Alice is finished
Repeat for remaining tasks

No possibility for conflicts

Sequential Performance
time

N ne
5

\ 4

Latency: 4 hours/task
Throughput: 1 task/4 hrs
Concurrency: 1

CPI=4
Can we do better?

Design 2: Pipelined Design

Partition room into stages of a pipeline

8\ ¥
SN

Dave Ca roI Bob Alice

One person owns a stage at a time
4 stages

4 people working simultaneously
Everyone moves right in lockstep

Design 2: Pipelined Design

Partition room into stages of a pipeline

%@&@\

Alice

One person owns a stage at a time
4 stages

4 people working simultaneously
Everyone moves right in lockstep

It still takes all four stages for one job to complete

Design 2: Pipelined Design

Partition room into stages of a pipeline

%@&@\

Bob Alice

One person owns a stage at a time
4 stages

4 people working simultaneously
Everyone moves right in lockstep

It still takes all four stages for one job to complete

Design 2: Pipelined Design

Partition room into stages of a pipeline

2\A\T

Bob Alice

One person owns a stage at a time
4 stages

4 people working simultaneously
Everyone moves right in lockstep

It still takes all four stages for one job to complete

Design 2: Pipelined Design

Partition room into stages of a pipeline

8\ ¥
SN

Dave Ca roI Bob Alice

One person owns a stage at a time
4 stages

4 people working simultaneously
Everyone moves right in lockstep

It still takes all four stages for one job to complete

Design 2: Pipelined Design

Partition room into stages of a pipeline

7 % '\

Alice Alice Alice Alice

One person owns a stage at a time
4 stages

4 people working simultaneously
Everyone moves right in lockstep

It still takes all four stages for one job to complete

Pipelined Performance

time
1 pi 3 4 5 6 /...

B

) Dho B DY

¥ Latency:

Throughput: 1 task/hr
Concurrency: 4 CPI=1

Pipelined Performance
Time
1 P 3 4 5 6 /7 8 9 10

| NOL ™ e
X GQ

Tl QQQ - [alw

What if drilling takes twice as long, but gluing and paint take % as long?

&

&

Latency:
Throughput: CPI =

Pipelined Performance
Time
1 P 3 4 5 6 /7 8 9 10

B

F
)
x

>

Done: 4 cycles

Done: 6 cycles

—>)
(@ Done: 8 cycles

)

\4

What if drilling takes twice as long, but gluing and paint take % as long?

Latency: 4 cycles/task
Throughput: 1 task/2 cycles CPI=2

Lessons
Principle:
Throughput increased by parallel execution

Balanced pipeline very important

Else slowest stage dominates performance

Pipelining:
* |dentify pipeline stages
* |solate stages from each other
e Resolve pipeline hazards (next lecture)

MIPs designed for pipelining

e |nstructions same length
e 32 bits, easy to fetch and then decode

e 3 types of instruction formats
* Easy to route bits between stages

e Can read a register source before even knowing
what the instruction is

e Memory access through Iw and sw only

 Access memory after ALU

Basic Pipeline
Five stage “RISC” load-store architecture

1. Instruction fetch (IF)
— get instruction from memory, increment PC

2. Instruction Decode (ID)
— translate opcode into control signals and read registers

3. Execute (EX)

— perform ALU operation, compute jump/branch targets

4. Memory (MEM)

— access memory if needed

5. Writeback (WB)

— update register file

A Processor

Review: Single cycle processor

) ® >
Inst
memory register > Alu
»ﬂ file) ‘
. . ~le— ‘:'] addr
= <—e
PC q din dout
offset control cmp I
target
imm
\—> extend

A Processor

memory register

file

N — N

/ f ‘
/ addr
PC ; / %g dom/
control
/
/

memory

new

\\\\l\\\-\\\\i\j/

jump/branc
targets

imm
\—> extend

Instruction Instruction L rite-
Fetch Decode emory—- gack

S — L] I

pcC

Execute

ClockeycleTime Graphs
3 4 6

1 2 /5\ 7/ 3
add | IF [[ID [| EX [[MEM IWB\
Iw IF || ID || EX [IMEM[{ WB
IF || ID || EX | [MEM[|WB
IF || ID || EX | [MEM[|WB
IF || ID || EX | [MEM[|WB
v
Latency: 5 cycles
Throughput: 1 instr/cycle S

Concurrency: 5

Principles of Pipelined Implementation

Break instructions across multiple clock cycles
(five, in this case)

Design a separate stage for the execution
performed during each clock cycle

Add pipeline registers (flip-flops) to isolate signals
between different stages

Instruction
Fetch

IF/ID

Pipelined Processor

register

file

>»Mu - C":[}_
()
addr
o —> din dout =
memory
compute
jump/branch
targets
Execute o Memory °| Back
EX/MEM MEM/WB

IF

Stage 1: Instruction Fetch

Fetch a new instruction every cycle
e Current PCis index to instruction memory

* Increment the PC at end of cycle (assume no branches for
now)

Write values of interest to pipeline register (IF/ID)
* Instruction bits (for later decoding)
e PC+4 (for later computing branch targets)

IF

instruction
memory

addr mc

> +4

PC

- PC+4
- pcrel (PC-relative); e.g. BEQ, BNE
- pcabs (PC absolute); e.g.) and JAL

. (PC+4),, ,5 ® target « 00
- pcreg (PC registers); e.g. JR

IF

instruction

memory

addr mc

}}4 00 = read word

P

PC
pcreg
em pcrel
@ pcabs

pcsel

inst

_n
~

‘ PC+4

O

Rest of pipeline

1D,

Stage 2: Instruction Decode

On every cycle:
e Read IF/ID pipeline register to get instruction bits
 Decode instruction, generate control signals
 Read from register file

Write values of interest to pipeline register (ID/EX)

e Control information, Rd index, immediates, offsets, ...
e Contents of Ra, Rb
e PC+4 (for computing branch targets later)

Stage 1: Instruction Fetch

inst

1D,

QIWE
el ——Rd : Al—
P register
MU"’//)(& f&gﬂ\[f||e B +——
Ra Rb

I Heod

p -

]

\ E %1/(*‘/\

PC+4

IF/ID

—

PC+4|[imm

1
ctrl

ID/EX

Rest of pipeline

Stage 1: Instruction Fetch

PC+4

IF/ID

1D,

inst

decode

WE
Rd
D

A

register
file B
Ra Rb

extend

PC+4|[imm

ctrl

ID/EX

Rest of pipeline

EX

Stage 3: Execute

On every cycle:
e Read ID/EX pipeline register to get values and control bits
* Perform ALU operation
e Compute targets (PC+4+offset, etc.) in case this is a branch
e Decide if jump/branch should be taken

Write values of interest to pipeline register (EX/MEM)
e Control information, Rd index, ...
e Result of ALU operation
* Value in case this is a memory store instruction

EX

aul|adid Jo 159y

d

198.e)
/

1410

aIu

|

d

wwl|

7+Jd

1410

9p0239(J UOoI1dNJISU| :Z 93e1S

EX/MEM

ID/EX

Stage 2: Instruction Decode

EX

|
pcreg P2 branch?
< \
()
-) > alu ”
= 0 / =
& 9]
= o
> A o
©
?II_' >>I pcrel 5 é
2| [~
@ pcabs
ID/EX EX/MEM

MEM

Stage 4: Memory

On every cycle:
e Read EX/MEM pipeline register to get values and control bits

e Perform memory load/store if needed
— address is ALU result

Write values of interest to pipeline register (MEM/WB)
e Control information, Rd index, ...
e Result of memory operation
* Pass result of ALU operation

MEM

AL W, Qe (€
— Ra £P6
~Sw/
D /-—-—_‘D
2 / =
> £
O addr [e K]
L.I>-<! a8 “u/ din dout [I E %
ok ©
U -
T memory &
a | B o
] mc
v = wr
— (o = (a/L —
o O
EX/MEM MEM/WB

pcsel

branch? MEM

pcreg

)] - > O
E I
o addr g_
o4 ©
&b +
o pcrel memory O

2 e
9 a0

S MC

—1 pcabs

e e

+ +

8] 8]

EX/MEM MEM/WB

WB

Stage 5: Write-back

On every cycle:
e Read MEM/WSB pipeline register to get values and control bits
e Select value and write to register file

WB

1410

Alowa 1 a8els

MEM/WB

result

Stage 4: Memory
\Y

dest

ctrl

MEM/WB

WB

inst
mem o
Mk
B]
Y
PC O
IF/ID

rd AL
=2 D
Bl—=| o
Ra Rb
=
£
S
+
&
e
e
&
o
@)
ID/EX

() 1 ()
addr

m n dOUt E
mem

O O

o o

a a

O O

EX/MEM MEM/WB

Pipelining Recap
Pipelining is a powerful technique to mask
latencies and increase throughput

* Logically, instructions execute one at a time

* Physically, instructions execute in parallel

— Instruction level parallelism

Abstraction promotes decoupling

* Interface (ISA) vs. implementation (Pipeline)

	Performance and Pipelining
	Slide Number 2
	Announcements
	Goals for today
	Performance
	Measures of Performance
	Measures of Performance
	How to make the computer faster?
	Latency: Optimize Delay on Critical Path
	Multi-Cycle Instructions
	Multi-Cycle Instructions
	Cycles Per Instruction (CPI)
	Total Time
	Total Time
	Total Time
	Example
	Example
	Example
	Example
	Amdahl’s Law
	Review: Single Cycle Processor
	Review: Single Cycle Processor
	Review: Multi Cycle Processor
	Improving Performance
	Slide Number 25
	The Kids
	The Bicycle
	The Materials
	The Instructions
	Design 1: Sequential Schedule
	Sequential Performance
	Design 2: Pipelined Design
	Design 2: Pipelined Design
	Design 2: Pipelined Design
	Design 2: Pipelined Design
	Design 2: Pipelined Design
	Design 2: Pipelined Design
	Pipelined Performance
	Pipelined Performance
	Pipelined Performance
	Lessons
	MIPs designed for pipelining
	Basic Pipeline
	A Processor
	A Processor
	Time Graphs
	Principles of Pipelined Implementation
	Pipelined Processor
	IF
	IF
	IF
	ID
	ID
	ID
	EX
	EX
	EX
	MEM
	MEM
	MEM
	WB
	WB
	WB
	Slide Number 65
	Pipelining Recap

