
Prof. Hakim Weatherspoon
CS 3410, Spring 2015

Computer Science
Cornell University

See P&H Chapter: 4.1-4.4, 1.6, Appendix B

Project Partner finding assignment on CMS

No official office hours over break

Lab1 due tomorrow

HW1 Help Sessions Wed, Feb 18 and Sun, Feb 21

Make sure to go to your Lab Section this week
Lab2 due in class this week (it is not homework)
Lab1: Completed Lab1 due tomorrow Friday, Feb 13th, before winter break
Note, a Design Document is due when you submit Lab1 final circuit
Work alone

Save your work!
• Save often. Verify file is non-zero. Periodically save to Dropbox, email.
• Beware of MacOSX 10.5 (leopard) and 10.6 (snow-leopard)

Homework1 is out
Due a week before prelim1, Monday, February 23rd
Work on problems incrementally, as we cover them in lecture (i.e. part 1)
Office Hours for help
Work alone

Work alone, BUT use your resources
• Lab Section, Piazza.com, Office Hours
• Class notes, book, Sections, CSUGLab

Check online syllabus/schedule
• http://www.cs.cornell.edu/Courses/CS3410/2015sp/schedule.html

• Slides and Reading for lectures
• Office Hours
• Pictures of all TAs
• Homework and Programming Assignments
• Dates to keep in Mind

• Prelims: Tue Mar 3rd and Thur April 30th
• Lab 1: Due this Friday, Feb 13th before Winter break
• Proj2: Due Thur Mar 26th before Spring break
• Final Project: Due when final would be (not known until Feb 14t

Schedule is subject to change

“Black Board” Collaboration Policy
• Can discuss approach together on a “black board”
• Leave and write up solution independently
• Do not copy solutions

Late Policy
• Each person has a total of four “slip days”
• Max of two slip days for any individual assignment
• Slip days deducted first for any late assignment,

cannot selectively apply slip days
• For projects, slip days are deducted from all partners
• 25% deducted per day late after slip days are exhausted

Regrade policy
• Submit written request to lead TA,

and lead TA will pick a different grader
• Submit another written request,

lead TA will regrade directly
• Submit yet another written request for professor to regrade.

5

ALU

5 5

control

Reg.
File

PC

Prog.
Mem

inst

+4

Data
Mem

Fetch Decode Execute Memory WB

How many stages of a datapath are there in our
single cycle MIPS design?

A) 1
B) 2
C) 3
D) 4
E) 5

5

ALU

5 5

control

Reg.
File

PC

Prog.
Mem

inst

+4

Data
Mem

Fetch Decode Execute Memory WB

A Single cycle processor

5

ALU

5 5

control

Reg.
File

PC

Prog.
Mem

inst

+4

Data
Mem

Fetch Decode Execute Memory WB

A Single cycle processor

5

ALU

5 5

control

Reg.
File

PC

Prog.
Mem

inst

+4

Data
Mem

Fetch Decode Execute Memory WB

A Single cycle processor

5

ALU

5 5

control

Reg.
File

PC

Prog.
Mem

inst

+4

Data
Mem

Fetch Decode Execute Memory WB

A Single cycle processor

5

ALU

5 5

control

Reg.
File

PC

Prog.
Mem

inst

+4

Data
Mem

Fetch Decode Execute Memory WB

A Single cycle processor

The datapath for a MIPS processor has five stages:
1. Instruction Fetch
2. Instruction Decode
3. Execution (ALU)
4. Memory Access
5. Register Writeback

This five stage datapath is used to execute all MIPS
instructions

There are how many types of instructions in the
MIPS ISA?

A) 1
B) 3
C) 5
D) 200
E) 1000s

Arithmetic/Logical
• R-type: result and two source registers, shift amount
• I-type: 16-bit immediate with sign/zero extension

Memory Access
• load/store between registers and memory
• word, half-word and byte operations

Control flow
• conditional branches: pc-relative addresses
• jumps: fixed offsets, register absolute

All MIPS instructions are 32 bits long, has 3 formats

R-type

I-type

J-type

op rs rt rd shamt func
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

op rs rt immediate
6 bits 5 bits 5 bits 16 bits

op immediate (target address)
6 bits 26 bits

MIPS Datapath
• Memory layout
• Control Instructions

Performance
• How fast can we make it?
• CPI (Cycles Per Instruction)
• MIPS (Instructions Per Cycle)
• Clock Frequency

Arithmetic/Logical
• R-type: result and two source registers, shift amount
• I-type: 16-bit immediate with sign/zero extension

Memory Access
• load/store between registers and memory
• word, half-word and byte operations

Control flow
• conditional branches: pc-relative addresses
• jumps: fixed offsets, register absolute

op mnemonic description
0x23 LW rd, offset(rs) R[rd] = Mem[offset+R[rs]]
0x2b SW rd, offset(rs) Mem[offset+R[rs]] = R[rd]

op rs rd offset
6 bits 5 bits 5 bits 16 bits

10101100101000010000000000000100

base + offset
addressing

I-Type

signed
offsets

ex: = Mem[4+r5] = r1 # SW r1, 4(r5)

Data
Mem

addr

ext

+4
5

imm

5 5

control

Reg.
File

PC

Prog.
Mem

ALUinst

sw

r5+4

4

Write Enable

r5

r1

ex: = Mem[4+r5] = r1 # SW r1, 4(r5)

op mnemonic description
0x20 LB rd, offset(rs) R[rd] = sign_ext(Mem[offset+R[rs]])
0x24 LBU rd, offset(rs) R[rd] = zero_ext(Mem[offset+R[rs]])
0x21 LH rd, offset(rs) R[rd] = sign_ext(Mem[offset+R[rs]])
0x25 LHU rd, offset(rs) R[rd] = zero_ext(Mem[offset+R[rs]])
0x23 LW rd, offset(rs) R[rd] = Mem[offset+R[rs]]
0x28 SB rd, offset(rs) Mem[offset+R[rs]] = R[rd]
0x29 SH rd, offset(rs) Mem[offset+R[rs]] = R[rd]
0x2b SW rd, offset(rs) Mem[offset+R[rs]] = R[rd]

op rs rd offset
6 bits 5 bits 5 bits 16 bits

10101100101000010000000000000100

Endianness: Ordering of bytes within a memory word

1000 1001 1002 1003

0x12345678

Big Endian = most significant part first (MIPS, networks)

Little Endian = least significant part first (MIPS, x86)

as 4 bytes
as 2 halfwords

as 1 word

1000 1001 1002 1003

0x12345678

as 4 bytes
as 2 halfwords

as 1 word

0x78 0x56 0x34 0x12
0x5678 0x1234

0x12 0x34 0x56 0x78
0x1234 0x5678

Examples (big/little endian):
r5 contains 5 (0x00000005)

SB r5, 2(r0)
LB r6, 2(r0)
R[r6] = 0x05

SW r5, 8(r0)
LB r7, 8(r0)
LB r8, 11(r0)
R[r7] = 0x00
R[r8] = 0x05

0x00000000
0x00000001
0x00000002
0x00000003
0x00000004
0x00000005
0x00000006
0x00000007
0x00000008
0x00000009
0x0000000a
0x0000000b
...

0x05

0x00
0x00
0x00
0x05

Arithmetic/Logical
• R-type: result and two source registers, shift amount
• I-type: 16-bit immediate with sign/zero extension

Memory Access
• load/store between registers and memory
• word, half-word and byte operations

Control flow
• conditional branches: pc-relative addresses
• jumps: fixed offsets, register absolute

op Mnemonic Description
0x2 J target PC = target  00

op immediate
6 bits 26 bits

00001001000000000000000000000001

J-Type

ex: j 0x1000001
PC = ((PC+4) & 0xf0000000) | 0x04000004

op Mnemonic Description
0x2 J target PC = (PC+4)31..28  target  00

(PC+4)31..28 target 00
4 bits 26 bits 2 bits

(PC+4)31..28 01 0000 0000 0000 0000 0000 0001 00

Absolute addressing for jumps
• Jump from 0x30000000 to 0x20000000? NO Reverse? NO

– But: Jumps from 0x2FFFFFFF to 0x3xxxxxxx are possible, but not reverse
• Trade-off: out-of-region jumps vs. 32-bit instruction encoding

MIPS Quirk:
• jump targets computed using already incremented PC

op immediate
6 bits 26 bits

00001001000000000000000000000001

J-Type

(PC+4)31..28 will be the same

op Mnemonic Description
0x2 J target PC = (PC+4)31..28  target  00

tgt

+4



Data
Mem

addr

ext

5 5 5

Reg.
File

PC

Prog.
Mem

ALUinst

control

imm
J

op Mnemonic Description
0x2 J target PC = (PC+4)31..28  target  00

(PC+4)31..28 0x100000100
(PC+4)31..280x4000004

op rs - - - func
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

00000000011000000000000000001000

op func mnemonic description
0x0 0x08 JR rs PC = R[rs]

R-Type

ex: JR r3

+4


tgt

Data
Mem

addr

ext

5 5 5

Reg.
File

PC

Prog.
Mem

ALUinst

control

imm

op func mnemonic description
0x0 0x08 JR rs PC = R[rs]

R[r3]

JR

ex: JR r3

E.g. Use Jump or Jump Register instruction to
jump to 0xabcd1234

But, what about a jump based on a condition?
assume 0 <= r3 <= 1
if (r3 == 0) jump to 0xdecafe00
else jump to 0xabcd1234

op mnemonic description
0x4 BEQ rs, rd, offset if R[rs] == R[rd] then PC = PC+4 + (offset<<2)
0x5 BNE rs, rd, offset if R[rs] != R[rd] then PC = PC+4 + (offset<<2)

op rs rd offset
6 bits 5 bits 5 bits 16 bits

00010000101000010000000000000011

signed
offsets

I-Type

ex: BEQ r5, r1, 3
If(R[r5]==R[r1]) then PC = PC+4 + 12 (i.e. 12 == 3<<2)

tgt

+4



Data
Mem

addr

ext

5 5 5

Reg.
File

PC

Prog.
Mem

ALUinst

control

imm

offset

+

Could have
used ALU for
branch add

=?

op mnemonic description
0x4 BEQ rs, rd, offset if R[rs] == R[rd] then PC = PC+4 + (offset<<2)
0x5 BNE rs, rd, offset if R[rs] != R[rd] then PC = PC+4 + (offset<<2)

R[r5]

BEQ

R[r1]

Could have
used ALU for
branch cmp

ex: BEQ r5, r1, 3

(PC+4)+3<<2

op rs subop offset
6 bits 5 bits 5 bits 16 bits

00000100101000010000000000000010

signed
offsets

almost I-Type

op subop mnemonic description
0x1 0x0 BLTZ rs, offset if R[rs] < 0 then PC = PC+4+ (offset<<2)
0x1 0x1 BGEZ rs, offset if R[rs] ≥ 0 then PC = PC+4+ (offset<<2)
0x6 0x0 BLEZ rs, offset if R[rs] ≤ 0 then PC = PC+4+ (offset<<2)
0x7 0x0 BGTZ rs, offset if R[rs] > 0 then PC = PC+4+ (offset<<2)

Conditional Jumps (cont.)

ex: BGEZ r5, 2
If(R[r5] ≥ 0) then PC = PC+4 + 8 (i.e. 8 == 2<<2)

op subop mnemonic description

0x1 0x0 BLTZ rs, offset if R[rs] < 0 then PC = PC+4+ (offset<<2)

0x1 0x1 BGEZ rs, offset if R[rs] ≥ 0 then PC = PC+4+ (offset<<2)

0x6 0x0 BLEZ rs, offset if R[rs] ≤ 0 then PC = PC+4+ (offset<<2)

0x7 0x0 BGTZ rs, offset if R[rs] > 0 then PC = PC+4+ (offset<<2)

tgt

+4



Data
Mem

addr

ext

5 5 5

Reg.
File

PC

Prog.
Mem

ALUinst

control

imm

offset

+

Could have
used ALU for
branch cmp

=?

cmp

R[r5]

BEQZ

ex: BGEZ r5, 2

(PC+4)+2<<2

op mnemonic description
0x3 JAL target r31 = PC+8 (+8 due to branch delay slot)

PC = (PC+4)31..28  target  00

op immediate
6 bits 26 bits

00001101000000000000000000000001

J-Type

op mnemonic description
0x2 J target PC = (PC+4)31..28  target  00

Discuss later

ex: JAL 0x1000001

Function/procedure callsWhy?

r31 = PC+8
PC = (PC+4)31..28 0x4000004

tgt

+4



Data
Mem

addr

ext

5 5 5

Reg.
File

PC

Prog.
Mem

ALUinst

control

imm

offset

+

=?

cmp

Could have
used ALU for

link add

+4

op mnemonic description
0x3 JAL target r31 = PC+8 (+8 due to branch delay slot)

PC = (PC+4)31..28  (target << 2)

R[r31]PC+8

ex: JAL 0x1000001 r31 = PC+8
PC = (PC+4)31..28 0x4000004

MIPS Datapath
• Memory layout
• Control Instructions

Performance
• How to get it?
• CPI (Cycles Per Instruction)
• MIPS (Instructions Per Cycle)
• Clock Frequency

Pipelining
• Latency vs throughput

How do we measure performance?
What is the performance of a single cycle CPU?

How do I get performance?

See: P&H 1.6

A) LW
B) SW
C) ADD/SUB/AND/OR/etc
D) BEQ
E) J

Data
Mem

addr

ext

+4
5

imm

5 5

control

Reg.
File

PC

Prog.
Mem

ALUinst

lw

r5+4

4

Write Enable

r5

ex: = r1 = Mem[4+r5] # LW r1, 4(r5)

Mem[4+r5]

Mem[4+r5]

r1

How do I get it?
Parallelism
Pipelining
Both!

Speed of a circuit is affected by the number of
gates in series (on the critical path or the
deepest level of logic)

combinatorial
Logic

tcombinatorial

in
pu

ts
ar

riv
e

ou
tp

ut
s

ex
pe

ct
ed

A3 B3

S3

C4

A1 B1

S1

A2 B2

S2

A0 B0

C0

S0

C1C2C3

• First full adder, 2 gate delay
• Second full adder, 2 gate delay
• …

Carry ripples from lsb to msb

Main ALU, slows us down
Does it need to be this slow?

Observations
• Have to wait for Cin

• Can we compute in parallel in some way?
• CLA carry look-ahead adder

Can we reason Cout independent of Cin?
• Just based on (A,B) only

When is Cout == 1, irrespective of Cin?

If Cin == 1, when is Cout also == 1

A B

S

CinCout

A B Cin Cout S

0 0 0 0 0

0 1 0 0 1

1 0 0 0 1

1 1 0 1 0

0 0 1 0 1

0 1 1 1 0

1 0 1 1 0

1 1 1 1 1

Full Adder
• Adds three 1-bit numbers
• Computes 1-bit result and

1-bit carry
• Can be cascaded

When is Cout == 1, irrespective of Cin

A B

S

CinCout

A B Cin Cout S

0 0 0 0 0

0 1 0 0 1

1 0 0 0 1

1 1 0 1 0

0 0 1 0 1

0 1 1 1 0

1 0 1 1 0

1 1 1 1 1

Full Adder
• Adds three 1-bit numbers
• Computes 1-bit result and

1-bit carry
• Can be cascaded

If Cin == 1, when is Cout also == 1

A B

Cin
S

p g

Create two terms: propagator, generator
g = 1, generates Cout: g = AB

• Irrespective of Cin

p = 1, propagates Cin to Cout: p = A + B

p and g generated in 1 gate delay
S is 2 gate delay after we get Cin

A B

C0

p g

A B

p g

A B

p g

A B

p g

CLA (carry look-ahead logic)

C1 = g0 + p0C0
C2 = g1 + p1C1
C3 = g2 + p2C2
C4 = g3 + p3C3

• CLA takes p,g from all 4 bits, C0 and generates all Cs: 2 gate delay

C1C2C3

C4

S

Ci = Function (C0, p and g values)

= g1 + p1(g0 + p0C0)
= g2 + p2(g1 + p1g0 + p1p0C0)
= g3 + p3(g2 + p2g1 + p2p1g0 + p2p1p0C0)

= g1 + p1g0 + p1p0C0
= g2 + p2g1 + p2p1g0 + p2p1p0C0

=
= g3 + p3g2 + p3p2g1 + p3p2p1g0 + p3p2p1p0C0

A0 B0

C0

A1 B1A2 B2A3 B3

CLA (carry look-ahead logic)

p0
g0p1

g1p2
g2p3

g3

• Given A,B’s, all p,g’s are generated in 1 gate delay in parallel

C1C2C3

• Given all p,g’s, all C’s are generated in 2 gate delay in parallel

S3 S2 S1 S0

• Given all C’s, all S’s are generated in 2 gate delay in parallel

Sequential operation is made into parallel operation!!

Ripple Carry vs Carry Lookahead Adder for 8 bits
• 2 x 8 vs. 5 gate delays = 16 vs. 5 gate delays

Ripple Carry vs. Carry Lookahead Adder for 32 bits
• 2 x 32 vs. 5 gate delays = 64 vs. 5 gate delays!

How do I get it?
Parallelism
Pipelining
Both!

MIPS Datapath
• Memory layout
• Control Instructions

Performance
• How to get it? Parallelism and Pipeline!
• CPI (Cycles Per Instruction)
• MIPS (Instructions Per Cycle)
• Clock Frequency

Pipelining
• Latency vs throughput

Next Time

	Processor
	Announcements
	Announcements
	Announcements
	Collaboration, Late, Re-grading Policies
	Full Datapath
	Iclicker
	Stages of datapath (1/5)
	Stages of datapath (2/5)
	Stages of datapath (3/5)
	Stages of datapath (4/5)
	Stages of datapath (5/5)
	Takeaway
	Iclicker
	MIPS Instruction Functions
	MIPS instructions
	Goals for today
	MIPS Instruction Types
	Memory Instructions
	Memory Operations
	Memory Instructions
	Endianness
	Memory Layout
	MIPS Instruction Types
	Control Flow: Absolute Jump
	Control Flow: Absolute Jump
	Absolute Jump
	Control Flow: Jump Register
	Jump Register
	Examples
	Control Flow: Branches
	Control Flow: Branches
	Control Flow: More Branches
	Control Flow: More Branches
	Control Flow: Jump and Link
	Jump and Link
	Goals for today
	Questions
	What instruction has the longest path
	Memory Operations
	Performance
	Performance: Aside
	4-bit Ripple Carry Adder
	Adding
	Carry Look Ahead Logic
	1-bit Adder with Carry
	1-bit Adder with Carry
	1-bit CLA adder
	4-bit CLA
	4-bit CLA
	Performance
	Performance
	Goals for today

