
Prof. Hakim Weatherspoon
CS 3410, Spring 2015

Computer Science
Cornell University

See: P&H Chapter 2.4, 3.2, B.2, B.5, B.6

Make sure you are
• Registered for class, can access CMS
• Have a Section you can go to.
• Lab Sections are required.

• “Make up” lab sections only 8:40am Wed, Thur, or Fri
• Bring laptop to Labs

• Project partners are required for projects.
• Have project partner in same Lab Section, if possible

HW1 will be out soon out
• Do problem with lecture
• Work alone
• But, use your resources

₋ Lab Section, Piazza.com, Office Hours, Homework Help Session,
₋ Class notes, book, Sections, CSUGLab

Check online syllabus/schedule
• http://www.cs.cornell.edu/Courses/CS3410/2015sp/schedule.html

• Slides and Reading for lectures
• Office Hours
• Pictures of all TAs
• Homework and Programming Assignments
• Dates to keep in Mind

• Prelims: Tue Mar 3rd and Thur April 30th
• Lab 1: Due Fri Feb 13th before Winter break
• Proj2: Due Thur Mar 26th before Spring break
• Final Project: Due when final would be (not known until Feb 14t

Schedule is subject to change

PC

imm

memory

target

offset cmpcontrol

=?

new
pc

memory

din dout

addr

register
file

inst

extend

+4 +4

A Single cycle processor

alu

Binary Operations
• Number representations
• One-bit and four-bit adders
• Negative numbers and two’s compliment
• Addition (two’s compliment)
• Subtraction (two’s compliment)

Recall: Binary
• Two symbols (base 2): true and false; 1 and 0
• Basis of Logic Circuits and all digital computers

So, how do we represent numbers in Binary (base 2)?

Recall: Binary
• Two symbols (base 2): true and false; 1 and 0
• Basis of Logic Circuits and all digital computers

So, how do we represent numbers in Binary (base 2)?
• We can represent numbers in Decimal (base 10).

– E.g. 6 3 7

• Can just as easily use other bases
– Base 2 — Binary
– Base 8 — Octal
– Base 16 — Hexadecimal

102 101 100

1 0 0 1 1 1 1 1 0 1
29 28 27 26 25 24 23 22 21 20

0x 2 7 d
162161160

0o 1 1 7 5
83 82 81 80

Recall: Binary
• Two symbols (base 2): true and false; 1 and 0
• Basis of Logic Circuits and all digital computers

So, how do we represent numbers in Binary (base 2)?
• We can represent numbers in Decimal (base 10).

– E.g. 6 3 7

• Can just as easily use other bases
– Base 2 — Binary
– Base 8 — Octal
– Base 16 — Hexadecimal

102 101 100
6∙102 + 3∙101 + 7∙100 = 637

1∙29+1∙26+1∙25+1∙24+1∙23+1∙22+1∙20 = 637
1∙83 + 1∙82 + 7∙81 + 5∙80 = 637

2∙162 + 7∙161 + d∙160 = 637
2∙162 + 7∙161 + 13∙160 = 637

0
1
2
3
4
5
6
7
8
9
a
b
c
d
e
f

How do we count in different bases?
• Dec (base 10) Bin (base 2) Oct (base 8) Hex (base 16)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

.

.

99
100

0
1
2
3
4
5
6
7

10
11
12
13
14
15
16
17
20
21
22

.

.

0
1
2
3
4
5
6
7
8
9
a
b
c
d
e
f

10
11
12

.

.

0
1

10
11

100
101
110
111

1000
1001
1010
1011
1100
1101
1110
1111

1 0000
1 0001
1 0010

.

.

0b 1111 1111 = ?
0b 1 0000 0000 = ?

0o 77 = ?
0o 100 = ?

0x ff = ?
0x 100 = ?

How do we count in different bases?
• Dec (base 10) Bin (base 2) Oct (base 8) Hex (base 16)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

.

.

99
100

0
1
2
3
4
5
6
7

10
11
12
13
14
15
16
17
20
21
22

.

.

0
1

10
11

100
101
110
111

1000
1001
1010
1011
1100
1101
1110
1111

1 0000
1 0001
1 0010

.

.

0b 1111 1111 = 255
0b 1 0000 0000 = 256

0o 77 = 63
0o 100 = 64

0x ff = 255
0x 100 = 256

0
1
2
3
4
5
6
7
8
9
a
b
c
d
e
f

10
11
12

.

.

How to convert a number between different bases?
Base conversion via repetitive division

• Divide by base, write remainder, move left with quotient

• 637 ÷ 8 = 79 remainder 5
• 79 ÷ 8 = 9 remainder 7
• 9 ÷ 8 = 1 remainder 1
• 1 ÷ 8 = 0 remainder 1

637 = 0o 1175

lsb (least significant bit)

msb (most significant bit)

lsbmsb

Convert a base 10 number to a base 2 number
Base conversion via repetitive division

• Divide by base, write remainder, move left with quotient
• 637 ÷ 2 = 318 remainder 1
• 318 ÷ 2 = 159 remainder 0
• 159 ÷ 2 = 79 remainder 1
• 79 ÷ 2 = 39 remainder 1
• 39 ÷ 2 = 19 remainder 1
• 19 ÷ 2 = 9 remainder 1
• 9 ÷ 2 = 4 remainder 1
• 4 ÷ 2 = 2 remainder 0
• 2 ÷ 2 = 1 remainder 0
• 1 ÷ 2 = 0 remainder 1

637 = 10 0111 1101 (can also be written as 0b10 0111 1101)

lsb (least significant bit)

msb (most significant bit)

lsbmsb

Convert a base 10 number to a base 16 number
Base conversion via repetitive division

• Divide by base, write remainder, move left with quotient
• 637 ÷ 16 = 39 remainder 13
• 39 ÷ 16 = 2 remainder 7
• 2 ÷ 16 = 0 remainder 2

637 = 0x 2 7 13 = 0x 2 7 d
Thus, 637 = 0x27d

lsb

msb
dec = hex
10 = 0xa
11 = 0xb
12 = 0xc
13 = 0xd
14 = 0xe
15 = 0xf

= bin
= 1010
= 1011
= 1100
= 1101
= 1110
= 1111

?

Convert a base 2 number to base 8 (oct) or 16 (hex)

Binary to Hexadecimal
• Convert each nibble (group of four bits) from binary to hex
• A nibble (four bits) ranges in value from 0…15, which is one hex digit

– Range: 0000…1111 (binary) => 0x0 …0xF (hex) => 0…15 (decimal)
• E.g. 0b10 0111 1101

– 0b10 = 0x2
– 0b0111 = 0x7
– 0b1101 = 0xd

– Thus, 637 = 0x27d = 0b10 0111 1101

Binary to Octal
• Convert each group of three bits from binary to oct
• Three bits range in value from 0…7, which is one octal digit

– Range: 0000…1111 (binary) => 0x0 …0xF (hex) => 0…15 (decimal)
• E.g. 0b1 001 111 101

– 0b1 = 0x1
– 0b001 = 0x1
– 0b111 = 0x7
– 0b101 = 0x5
– Thus, 637 = 0o1175 = 0b10 0111 1101

We can represent any number in any base
• Base 10 – Decimal

• Base 2 — Binary

• Base 8 — Octal

• Base 16 — Hexadecimal

102 101 100

1 0 0 1 1 1 1 1 0 1
29 28 27 26 25 24 23 22 21 20

0x 2 7 d
162161160

0o 1 1 7 5
83 82 81 80

6 3 7 6∙102 + 3∙101 + 7∙100 = 637

1∙29+1∙26+1∙25+1∙24+1∙23+1∙22+1∙20 = 637

1∙83 + 1∙82 + 7∙81 + 5∙80 = 637

2∙162 + 7∙161 + d∙160 = 637
2∙162 + 7∙161 + 13∙160 = 637

Digital computers are implemented via logic circuits and thus
represent all numbers in binary (base 2).

We (humans) often write numbers as decimal and hexadecimal
for convenience, so need to be able to convert to binary and
back (to understand what the computer is doing!).

Binary Operations
• Number representations
• One-bit and four-bit adders
• Negative numbers and two’s compliment
• Addition (two’s compliment)
• Subtraction (two’s compliment)

Binary Arithmetic: Add and Subtract two binary numbers

Addition works the same way
regardless of base

• Add the digits in each position
• Propagate the carry

Unsigned binary addition is pretty easy
• Combine two bits at a time
• Along with a carry

183
+ 254

001110
+ 011100

How do we do arithmetic in binary?

1

437

111 000

111
Carry-outCarry-in

Addition works the same way
regardless of base

• Add the digits in each position
• Propagate the carry

Unsigned binary addition is pretty easy
• Combine two bits at a time
• Along with a carry

183
+ 254

001110
+ 011100

How do we do arithmetic in binary?

437

1

101010

111

Binary addition requires
• Add of two bits PLUS carry-in
• Also, carry-out if necessary

Half Adder
• Adds two 1-bit numbers
• Computes 1-bit result and

1-bit carry
• No carry-in

A B

S

Cout

A B Cout S

0 0

0 1

1 0

1 1

Half Adder
• Adds two 1-bit numbers
• Computes 1-bit result and

1-bit carry
• No carry-in

• S = �AB + A�B
• Cout = AB

A B

S

Cout

A B Cout S

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

Cout

S

A B

Half Adder
• Adds two 1-bit numbers
• Computes 1-bit result and

1-bit carry
• No carry-in

• S = �AB + A�B = A ⊕ B
• Cout = AB

A B

S

Cout

A B Cout S

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

A B

Cout

S

A B

S

Cin

A B Cin Cout S

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Cout

Full Adder
• Adds three 1-bit numbers
• Computes 1-bit result and 1-bit carry
• Can be cascaded

Activity: Truth Table and Sum-of-Product.
Logic minimization via Karnaugh Maps and
algebraic minimization.
Draw Logic Circuits

Full Adder
• Adds three 1-bit numbers
• Computes 1-bit result and 1-bit carry
• Can be cascaded

• S = ABC + �AB�C + ABC + ABC
• Cout = �ABC + A�BC + AB�C + ABC

A B

S

Cin

A B Cin Cout S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Cout

Cout

S

A B

Cin

A B

S

Cin

A B Cin Cout S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Full Adder
• Adds three 1-bit numbers
• Computes 1-bit result and 1-bit carry
• Can be cascaded

• S = ABC + �AB�C + ABC + ABC
• Cout = �ABC + A�BC + AB�C + ABC

Cout

00 01 11 10

0
1

Cin

AB

00 01 11 10
0
1

Cin

AB CoutS

Cout

S

A B

Cin

A B

S

Cin

A B Cin Cout S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Full Adder
• Adds three 1-bit numbers
• Computes 1-bit result and 1-bit carry
• Can be cascaded

• S = ABC + �AB�C + ABC + ABC
• Cout = �ABC + A�BC + AB�C + ABC
• Cout = AB + AC + BC

Cout

0 0 1 0
0 1 1 1

00 01 11 10

0
1

Cin

AB

0 1 0 1
1 0 1 0

00 01 11 10
0
1

Cin

AB CoutS

Cout

S

A B

Cin

A B

S

Cin

A B Cin Cout S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Full Adder
• Adds three 1-bit numbers
• Computes 1-bit result and 1-bit carry
• Can be cascaded

• S = ABC + �AB�C + ABC + ABC
• Cout = �ABC + A�BC + AB�C + ABC
• Cout = AB + AC + BC

Cout

0 0 1 0
0 1 1 1

00 01 11 10

0
1

Cin

AB

0 1 0 1
1 0 1 0

00 01 11 10
0
1

Cin

AB CoutS

Cout

S

A B

Cin

A B

S

Cin

A B Cin Cout S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Full Adder
• Adds three 1-bit numbers
• Computes 1-bit result and 1-bit carry
• Can be cascaded

• S = ABC + �AB�C + ABC + ABC
• S = �A(�BC + B�C) + A(BC + BC)
• S = �A(B ⊕ C) + A(B ⊕ C)
• S = A ⊕ (B ⊕ C)
• Cout = �ABC + A�BC + AB�C + ABC
• Cout = AB + AC + BC

Cout

0 0 1 0
0 1 1 1

00 01 11 10

0
1

Cin

AB

0 1 0 1
1 0 1 0

00 01 11 10
0
1

Cin

AB CoutS

S

A B

Cin
Cout

A B

S

Cin

A B Cin Cout S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Full Adder
• Adds three 1-bit numbers
• Computes 1-bit result and 1-bit carry
• Can be cascaded

• S = ABC + �AB�C + ABC + ABC
• S = �A(�BC + B�C) + A(BC + BC)
• S = �A(B ⊕ C) + A(B ⊕ C)
• S = A ⊕ (B ⊕ C)
• Cout = �ABC + A�BC + AB�C + ABC
• Cout = AB + AC + BC

Cout

Cout

S

A B

Cin

0 0 1 0
0 1 1 1

00 01 11 10

0
1

Cin

AB

0 1 0 1
1 0 1 0

00 01 11 10
0
1

Cin

AB CoutS

Full Adder
• Adds three 1-bit numbers
• Computes 1-bit result and 1-bit carry
• Can be cascaded

• S = ABC + �AB�C + ABC + ABC
• S = �A(�BC + B�C) + A(BC + BC)
• S = �A(B ⊕ C) + A(B ⊕ C)
• S = A ⊕ (B ⊕ C)
• S = A ⊕ B ⊕ C
• Cout = �ABC + A�BC + AB�C + ABC
• Cout = �ABC + A�BC + AB(�C + C)
• Cout = �ABC + A�BC + AB
• Cout = (�AB + A�B)C + AB
• Cout = (A ⊕ B)C + AB

A B

S

Cin

A B Cin Cout S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Cout

Cout

S

A B

Cin

Full Adder
• Adds three 1-bit numbers
• Computes 1-bit result and 1-bit carry
• Can be cascaded

• S = ABC + �AB�C + ABC + ABC
• S = �A(�BC + B�C) + A(BC + BC)
• S = �A(B ⊕ C) + A(B ⊕ C)
• S = A ⊕ (B ⊕ C)
• S = A ⊕ B ⊕ C
• Cout = �ABC + A�BC + AB�C + ABC
• Cout = �ABC + A�BC + AB(�C + C)
• Cout = �ABC + A�BC + AB
• Cout = (�AB + A�B)C + AB
• Cout = (A ⊕ B)C + AB

A B

S

Cin

A B Cin Cout S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Cout

4-Bit Full Adder
• Adds two 4-bit numbers and carry in
• Computes 4-bit result and carry out
• Can be cascaded

A[4] B[4]

S[4]

Cout Cin

• Adds two 4-bit numbers, along with carry-in
• Computes 4-bit result and carry out

• Carry-out = overflow indicates result does not
fit in 4 bits

A0 B0

S0

A1 B1

S1

A2 B2

S2

A3 B3

S3

Cout Cin

0 0 1 10 0 1 0

0 1 0 1

0 0 1 0 0

• Adds two 4-bit numbers, along with carry-in
• Computes 4-bit result and carry out

• Carry-out = overflow indicates result does not
fit in 4 bits

A0 B0

S0

A1 B1

S1

A2 B2

S2

A3 B3

S3

Cout

Digital computers are implemented via logic circuits and
thus represent all numbers in binary (base 2).

We (humans) often write numbers as decimal and
hexadecimal for convenience, so need to be able to convert
to binary and back (to understand what computer is
doing!).

Adding two 1-bit numbers generalizes to adding two
numbers of any size since 1-bit full adders can be cascaded.

Binary Operations
• Number representations
• One-bit and four-bit adders
• Negative numbers and two’s compliment
• Addition (two’s compliment)
• Subtraction (two’s compliment)

How do we subtract two binary numbers?
Equivalent to adding with a negative number

How do we represent negative numbers?

First Attempt: Sign/Magnitude Representation
• 1 bit for sign (0=positive, 1=negative)
• N-1 bits for magnitude

Problem?
• Two zero’s: +0 different than -0
• Complicated circuits

IBM 7090

0111 =
1111 =
0111 = 7
1111 = -7

0000 = +0
1000 = -0

Second Attempt: One’s complement
• Leading 0’s for positive and 1’s for negative
• Negative numbers: complement the positive number

Problem?
• Two zero’s still: +0 different than -0
• -1 if offset from two’s complement
• Complicated circuits

– Carry is difficult

PDP 1

0111 =
1000 =
0111 = 7
1000 = -7

0000 = +0
1111 = -0

What is used: Two’s Complement Representation

Nonnegative numbers are represented as usual
• 0 = 0000, 1 = 0001, 3 = 0011, 7 = 0111

Leading 1’s for negative numbers
To negate any number:

• complement all the bits (i.e. flip all the bits)
• then add 1
• -1: 1 ⇒ 0001 ⇒ 1110 ⇒ 1111
• -3: 3 ⇒ 0011 ⇒ 1100 ⇒ 1101
• -7: 7 ⇒ 0111 ⇒ 1000 ⇒ 1001
• -8: 8 ⇒ 1000 ⇒ 0111 ⇒ 1000
• -0: 0 ⇒ 0000 ⇒ 1111 ⇒ 0000 (this is good, -0 = +0)

Is there only one zero!

One more example. How do we represent -20?

20 = 0001 0100
20 = 1110 1011

+1
-20 = 1110 1100

0 = 0000
�0 = 1111

+1
0 = 0000

Negatives
(two’s complement: flip then add 1):
�0 = 1111 -0 = 0000
�1 = 1110 -1 = 1111
�2 = 1101 -2 = 1110
�3 = 1100 -3 = 1101
�4 = 1011 -4 = 1100
�5 = 1010 -5 = 1011
�6 = 1001 -6 = 1010
�7 = 1000 -7 = 1001
�8 = 0111 -8 = 1000

Non-negatives
(as usual):

+0 = 0000
+1 = 0001
+2 = 0010
+3 = 0011
+4 = 0100
+5 = 0101
+6 = 0110
+7 = 0111
+8 = 1000

Non-negatives
(as usual):

+0 = 0000
+1 = 0001
+2 = 0010
+3 = 0011
+4 = 0100
+5 = 0101
+6 = 0110
+7 = 0111
+8 = 1000

Negatives
(two’s complement: flip then add 1):
�0 = 1111 -0 = 0000
�1 = 1110 -1 = 1111
�2 = 1101 -2 = 1110
�3 = 1100 -3 = 1101
�4 = 1011 -4 = 1100
�5 = 1010 -5 = 1011
�6 = 1001 -6 = 1010
�7 = 1000 -7 = 1001
�8 = 0111 -8 = 1000

Signed two’s complement
• Negative numbers have leading 1’s
• zero is unique: +0 = - 0
• wraps from largest positive to largest negative

N bits can be used to represent
• unsigned: range 0…2N-1

– eg: 8 bits ⇒ 0…255
• signed (two’s complement): -(2N-1)…(2N-1 - 1)

– E.g.: 8 bits ⇒ (1000 000) … (0111 1111)
– -128 … 127

Extending to larger size
• 1111 = -1
• 1111 1111 = -1
• 0111 = 7
• 0000 0111 = 7

Truncate to smaller size
• 0000 1111 = 15
• BUT, 0000 1111 = 1111 = -1

Addition with two’s complement signed numbers
Perform addition as usual, regardless of sign
(it just works)

Examples
• 1 + -1 =
• -3 + -1 =
• -7 + 3 =
• 7 + (-3) =

Addition with two’s complement signed numbers
Perform addition as usual, regardless of sign
(it just works)

Examples
• 1 + -1 = 0001 + 1111 =
• -3 + -1 = 1101 + 1111 =
• -7 + 3 = 1001 + 0011 =
• 7 + (-3) = 0111 + 1101 =

Addition with two’s complement signed numbers
Perform addition as usual, regardless of sign
(it just works)

Examples
• 1 + -1 = 0001 + 1111 = 0000 (0)
• -3 + -1 = 1101 + 1111 = 1100 (-4)
• -7 + 3 = 1001 + 0011 = 1100 (-4)
• 7 + (-3) = 0111 + 1101 = 0100 (4)
• What is wrong with the following additions?

– 7 + 1, -7 + -3, -7 + -1
– 1000 overflow, 1 0110 overflow, 1000 fine

Why create a new circuit?
Just use addition using two’s complement math

• How?

Two’s Complement Subtraction
• Subtraction is simply addition,

where one of the operands has been negated
– Negation is done by inverting all bits and adding one

A – B = A + (-B) = A + (�B + 1)

S0S1S2S3

1

A0

B0

A1

B1

A2

B2

A3

B3

Cout

0 0 1 1
0 1 0 0

0 0 0 1

1 1 0 0

1 1 0 0

Two’s Complement Subtraction
• Subtraction is simply addition,

where one of the operands has been negated
– Negation is done by inverting all bits and adding one

A – B = A + (-B) = A + (�B + 1)

Q: What if (-B) overflows?

S0S1S2S3

1

A0

B0

A1

B1

A2

B2

A3

B3

Q: How do we detect and handle overflows?

Cout

Digital computers are implemented via logic circuits and thus
represent all numbers in binary (base 2).
We (humans) often write numbers as decimal and hexadecimal
for convenience, so need to be able to convert to binary and
back (to understand what computer is doing!).

Adding two 1-bit numbers generalizes to adding two numbers
of any size since 1-bit full adders can be cascaded.

Using Two’s complement number representation simplifies
adder Logic circuit design (0 is unique, easy to negate).
Subtraction is simply adding, where one operand is negated
(two’s complement; to negate just flip the bits and add 1).
.

Binary Operations
• Number representations
• One-bit and four-bit adders
• Negative numbers and two’s compliment
• Addition (two’s compliment)
• Subtraction (two’s compliment)
• One more topic…

In general, how do we detect and handle overflow?

When can overflow occur?
• adding a negative and a positive?

• adding two positives?

• adding two negatives?

When can overflow occur?
• adding a negative and a positive?

– Overflow cannot occur (Why?)
– Always subtract larger magnitude from smaller

• adding two positives?
– Overflow can occur (Why?)
– Precision: Add two positives, and get a negative number!

• adding two negatives?
– Overflow can occur (Why?)
– Precision: add two negatives, get a positive number!

Rule of thumb:
• Overflow happens iff

carry into msb != carry out of msb

When can overflow occur?

Rule of thumb:
• Overflow happened iff

carry into msb != carry out of msb

A B Cin Cout S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1
SMSB

over
flow

AMSB BMSB

Cout_MSB Cin_MSB

MSB

Wrong
Sign

Wrong
Sign

Two’s Complement Adder with overflow detection

A0 B0

S0

A1 B1

S1

A2 B2

S2

A3 B3

S3

over
flow

0

Two’s Complement Subtraction with overflow
detection

S0S1S2S3

over
flow

1

A0

B0

A1

B1

A2

B2

A3

B3

Two’s Complement Adder with overflow detection

S0S1S2S3

over
flow

A0

B0

A1

B1

A2

B2

A3

B3

mux mux mux mux

0=add
1=sub

Note: 4-bit adder is drawn for illustrative purposes and may not represent the optimal design.

Two’s Complement Adder with overflow detection

S0S1S2S3

over
flow

A0

B0

A1

B1

A2

B2

A3

B3

mux mux mux mux

0=add
1=sub

0 0 1 1

0 1 0 1
1 1 0 0

0 1 1 0 1

0 0 01

Note: 4-bit adder is drawn for illustrative purposes and may not represent the optimal design.

Two’s Complement Adder with overflow detection

S0S1S2S3

over
flow

A0

B0

A1

B1

A2

B2

A3

B3

mux mux mux mux

0=add
1=sub

0 0 1 1

0 1 0 1
0 0 1 1

1 0 1 1 1

1 0 00

Note: 4-bit adder is drawn for illustrative purposes and may not represent the optimal design.

Digital computers are implemented via logic circuits and thus
represent all numbers in binary (base 2).
We (humans) often write numbers as decimal and hexadecimal for
convenience, so need to be able to convert to binary and back (to
understand what computer is doing!).

Adding two 1-bit numbers generalizes to adding two numbers of
any size since 1-bit full adders can be cascaded.

Using Two’s complement number representation simplifies adder
Logic circuit design (0 is unique, easy to negate). Subtraction is
simply adding, where one operand is negated (two’s complement;
to negate just flip the bits and add 1).

Overflow if sign of operands A and B != sign of result S.
Can detect overflow by testing Cin != Cout of the most significant bit
(msb), which only occurs when previous statement is true.

Binary Operations
• Number representations
• One-bit and four-bit adders
• Negative numbers and two’s compliment
• Addition (two’s compliment)
• Subtraction (two’s compliment)
• And, how to detect overflow

We can now implement combinational logic circuits
• Design each block

– Binary encoded numbers for compactness

• Decompose large circuit into manageable blocks
– 1-bit Half Adders, 1-bit Full Adders,

n-bit Adders via cascaded 1-bit Full Adders, ...

• Can implement circuits using NAND or NOR gates
• Can implement gates using use PMOS and NMOS-

transistors
• And can add and subtract numbers (in two’s

compliment)!
• Next time, state and finite state machines…

	Numbers and Arithmetic
	Announcements
	Annnouncements
	Big Picture: Building a Processor
	Goals for Today
	Number Representations
	Number Representations
	Number Representations
	Number Representations: Activity #1 Counting
	Number Representations: Activity #1 Counting
	Number Representations
	Number Representations
	Number Representations
	Number Representations
	Number Representations Summary
	Takeaway
	Today’s Lecture
	Next Goal
	Binary Addition
	Binary Addition
	Binary Addition
	1-bit Adder
	1-bit Adder
	1-bit Adder
	1-bit Adder with Carry
	1-bit Adder with Carry
	1-bit Adder with Carry
	1-bit Adder with Carry
	1-bit Adder with Carry
	1-bit Adder with Carry
	1-bit Adder with Carry
	1-bit Adder with Carry
	Lab0 1-bit Adder with Carry
	4-bit Adder
	4-bit Adder
	4-bit Adder
	Takeaway
	Today’s Lecture
	Next Goal
	First Attempt: Sign/Magnitude Representation
	Second Attempt: One’s complement
	Two’s Complement Representation
	Two’s Complement Representation
	Two’s Complement
	Two’s Complement
	Two’s Complement Facts
	Sign Extension & Truncation
	Two’s Complement Addition
	Two’s Complement Addition
	Two’s Complement Addition
	Binary Subtraction
	Binary Subtraction
	Binary Subtraction
	Takeaway
	Today’s Lecture
	Next Goal
	Overflow
	Overflow
	Overflow
	Two’s Complement Adder
	Two’s Complement Adder
	Two’s Complement Adder
	Two’s Complement Adder
	Two’s Complement Adder
	Takeaway
	Today’s Lecture
	Summary

