
C Lab 2
Intermediate Pointers & Basic Structures



Goals

● Review
○ Pointers

○ Referencing/Dereferencing

● free

● malloc

● structs



Review: What are Pointers?

● A pointer is an address on either the stack or heap.

● EX: “double *” should address a double in memory.

● For the pointer to contain data, some other function 

must create the data it will point to.

● This is typically a call to malloc.



Getting Pointer/Reference

● To get pointer to something, use ‘&’

● ‘&’ allows to pass items by reference

● To dereference or get item pointed to use ‘*’

● ‘*’ is the opposite of ‘&’



Pass by Value

Pass by value:

void plus(int num){

num++;

}

void main(){

int num = 3;

plus(num);

printf(“%d\n”, num);

}

What does main print?



Pass by Reference

Pass by reference:

void plus(int *num){

(*num)++;

}

void main(){

int num = 3;

plus(&num);

printf(“%d\n”, num);

}

What does main print now?



Void*

● “void*” may point to arbitrary types (i.e. int*, char*, etc.)

● Can be cast to appropriate types



Malloc

● Malloc returns a void* pointer

● The memory it allocated doesn’t inherently have any type

● Malloc returns null if it fails. Always check the return 

value!



Structs

● Personalized types, somewhat like classes

● May contain items of choice

● Often the basis of (data) structures



Structs

typedef struct {

int *buffer;

int buffersize;

int length;

} arraylist;



Editing Struct Fields

● You may declare structs on the stack

● You may access/edit fields of struct using ‘.’ 

● Think about why this works (Hint: pointers)



Editing Struct Fields

arraylist a;

a.buffer = NULL;

a.buffer_size = 0;

a.length = 0;



Editing Struct Fields

● You may declare structs on the heap

● Now you access/edit fields using ‘->’

● This syntax is more helpful visually 



Editing Struct Fields

arraylist *a = (arraylist *)malloc(sizeof(arraylist));

a->buffer = NULL;

a->buffer_size = 0;

a->length = 0;



Default values and null

Null is a pointer value going “nowhere”

If a pointer shouldn’t be pointing at anything 

set it to null

In C, values aren’t initialized to any particular 

value

-They take whatever happened to be in 

memory



Memory Management

● You must free what you malloc (heap)

● Stack manages itself

arraylist *a = (arraylist *)malloc(sizeof(arraylist));

free(a); //yaaaaaaaaay



Memory Management

● Do not free what you did not malloc!!!

● Do not free address consecutively!!!

int num = 3;

free(&num); // :,O

int *num = malloc(4)

free(num); //yaaaayyy

free(num); //staaahp



Memory Takeaways

● Only free what has been malloc’d

● Only free malloc’d memory once

● For more on stack vs. heap:

http://gribblelab.org/CBootcamp/7_Memory_Stack_vs_Heap.html#sec-4

http://gribblelab.org/CBootcamp/7_Memory_Stack_vs_Heap.html


References

From the C reference manual:

● Pointers: 4.5.2, 5.3

● Structs: 5.6

● Free: 16.1 (near end), 16.1.1


