Welcome to the CS3410 C Primer

Please sit in the front rows so that you
can see terminal output

If you can't read this, then you are too far away

C Primer

CS3410
Paul Upchurch & Jason Yosinski

Material

Introduction to writing C programs on a UNIX
system.

Same material as CS2022, but condensed into
three 2-hour sessions.

Knowledge of a modern high-level language is
helpful (C++, Java). Otherwise, Google is your
friend.

Schedule

January 28 |Hello World, pointers, memory model,
Monday UNIX

February 7 | Arrays, structured data, debugging,
Thursday /O (file and network)

February 11 | Preprocessor, serialization, threads,
Monday advanced topics (goto, exceptions,
assembly), C for Java programmers

More info

See the course web page for CS2022.

Slides, homeworks and example code by
Hussam Abu-Libdeh.

www.cs.cornell.edu/courses/CS2022/2011fa/

UNIX Access

All students have UNIX accounts in the
CSUGLab.

1. Create your password at
http://www.csuglab.cornell.edu/userinfo/

2. ssh to csugXX.csuglab.cornell.edu

This info will be on the first homework.

Arrays and Strings
CS 2022: Introduction to C

Instructor: Hussam Abu-Libdeh

Cornell University
(based on slides by Saikat Guha)

Fall 2011, Lecture 5

Arrays and Strings CS 2022, Fall 2011, Lecture 5

NN
Arrays

Contiguous memory
Type is same as element-pointer

» Accessing array elements is syntactic sugar for
pointer arithmetic

On the stack
» Fixed-size (at compile time)
» Compiler allocates
» Compiler deallocates

On the heap

» Variable size (malloc)
» Explicit allocation/deallocation

v

v

v

v

Arrays and Strings CS 2022, Fall 2011, Lecture 5

I——————
Declaring Arrays

void foo(int x) {
int a[100];
int b[] = {0, 1, 0, 2, 3, 1};
int c[x]; // ERROR: Size must be const.

al0] = 10;
als] = b[2];
a[100] = 10; // BAD: Clobbering stack!!

x(a + 1) = 20; // same as al[l1] = 20;
xb = x(a + 5); // same as b[0] a[5];

Arrays and Strings CS 2022, Fall 2011, Lecture 5

I——————
Declaring Arrays

#include<stdlib.h>

void foo(int x) {
int *a = malloc(x * sizeof(int));

al0] = 10; // same as *a = 10;
al1] = al[0]; // same as *(a+l) = xa;
free(a);

Arrays and Strings CS 2022, Fall 2011, Lecture 5

NN
Relevant Library

#include <string.h>

» Set all elements to O:
memset (array, 0, bytes)
» Copy elements:
memcpy (dst, src, bytes)

> Note:
» bytes = number of elements * sizeof(int) for
integer arrays.

Arrays and Strings CS 2022, Fall 2011, Lecture 5

I——————
Array Problems

» No array-bound checks. No warnings.
» Can clobber stack or heap
» especially with array-to-array copy when the
destination array doesn't have enough space.

» sizeof (array) returns:

» number of bytes, when exact size can be

determined
» size of pointer, when size cannot be determined at

compile time and is treated as a pointer.
Avoid this!

Arrays and Strings CS 2022, Fall 2011, Lecture 5

O
Characters

v

Type for character: char

v

1-byte in size

v

Enclosed in single-quotes

v

printf format: %c

ASCII character
» Alpha: ’a’
» Digit: ’4°
» Special: \t’
> Null: °\0’

Type for unicode charcter: wchar_t

v

v

Arrays and Strings CS 2022, Fall 2011, Lecture 5

I——————
Strings

» Just an array of characters

» String: char * or char []

» Terminated by Null character ('\0’)
» Literals enclosed in double-quotes

» "Hello" is the same as
char str[] = {)HJ’ 7e7’ 71;’ 71)’ ,O),)\07}

Arrays and Strings CS 2022, Fall 2011, Lecture 5

I——————
Strings

» printf format: %s
» (str + 5):

» type is char x;
» value: substring starting at 6th character

» x(str + 5) or str[5]
» the 6th character

Arrays and Strings CS 2022, Fall 2011, Lecture 5

.
string.h Library Functions

» Many functions for common string
manipulation tasks.
» ...use them, they will make your life a lot easier

» Library functions expect null-terminated strings.
> When joining/copying/splitting strings, library
inserts null-character where appropriate.

Arrays and Strings CS 2022, Fall 2011, Lecture 5

NN
Getting Help on Library Functions

To quickly check the manual pages,
man func_name

on a Unix/Linux system. Example:

» man strlen

Arrays and Strings CS 2022, Fall 2011, Lecture 5

.
string.h Library Functions

» strlen(s)
Length, not including "\0’

» strncpy(dst, src, n)
Copies 'n’ characters from src to dst (incl. '\0")

» strncat(dst, src, n)
Copies characters from src to end of dst until dst has 'n’
characters (incl. '\0')

Arrays and Strings CS 2022, Fall 2011, Lecture 5

.
string.h Library Functions

» int strcmp(char *sl, char *s2)
Compares strings. Returns 0 when strings are equal.
Positive when s1 greater, negative when s1 smaller.
ASCII order.

Note: Cannot use == to check string equality since it
compares pointers. Points to two different copies of the same

string will be different.

Arrays and Strings CS 2022, Fall 2011, Lecture 5

.
string.h Library Functions

» char *strstr(char *haystack, char *needle)
Search for a substring in a string

» char *strdup(char *str)
Allocates space on the heap (with malloc) and copies
the argument into the allocated space.
Caller MUST free the returned string when done.

» char *strtok_r(char *str, char *delim, char
**sav)
Used to break apart a string into pieces. See man-page
for details.

Arrays and Strings CS 2022, Fall 2011, Lecture 5

I——————
Arrays of Strings

» char ** or char *a[]
» e.g. command-line arguments
» a[0] is a string (type char *)

Arrays and Strings CS 2022, Fall 2011, Lecture 5

Enum, Typedef, Structures and

Unions
CS 2022: Introduction to C

Instructor: Hussam Abu-Libdeh

Cornell University
(based on slides by Saikat Guha)

Fall 2011, Lecture 6

Enum, Typedef, Structures and Unions CS 2022, Fall 2011, Lecture 6

NN
More Primitive Types

» Different sized integers
» int: machine-dependent
» char: 8-bits
» int8_t: 8-bits signed
» int16_t: 16-bits signed
» int32_t: 32-bits signed
» int64_t: 64-bits signed
» uint8_t, uint32_t, ...: unsigned

» Floating point numbers

» float: 32-bits
» double: 64-bits

Enum, Typedef, Structures and Unions CS 2022, Fall 2011, Lecture 6

NN
Complex Types

Enumerations
(user-defined weekday: sunday, monday, ...)

v

Structures (user-defined combinations of other types)

v

v

Union (same data, multiple interpretations)

v

Function types (and function pointers)

v

Arrays and Pointers of the above

Enum, Typedef, Structures and Unions CS 2022, Fall 2011, Lecture 6

e
Enumerations

enum days {mon, tue, wed, thu, fri, sat, sun};
// Same as:

// #define mon 0O

// #define tue 1

// ...

// #define sun 6

enum days {mon=3, tue=8, wed, thu, fri, sat, sun};
// Same as:

// #define mon 3

// #define tue 8

/] ...

// #define sun 13

Enum, Typedef, Structures and Unions CS 2022, Fall 2011, Lecture 6

e
Enumerations

enum days day;
// Same as: int day;

for(day = mon; day <= sun; day++) {

if (day == sun) {
printf ("Sun\n");
} else {

printf("day = %d\n", day);
}

Enum, Typedef, Structures and Unions CS 2022, Fall 2011, Lecture 6

e
Enumerations

v

Basically integers
Can use in expressions like ints

v

Makes code easier to read

v

v

Cannot get string equiv.

v

caution: day++ will always add 1 even if enum
values aren’t contiguous.

Enum, Typedef, Structures and Unions CS 2022, Fall 2011, Lecture 6

O
Structures

struct mystruct {
char name[32];
int age;
char *addr;

};

Enum, Typedef, Structures and Unions CS 2022, Fall 2011, Lecture 6

O
Structures

void foo(void) {

struct mystruct person; // uninitialized
struct mystruct person2 = { // initialization
.name = {’£’,%07,%0°,’\0°},
.age = 22,
.addr = NULL
};

// struct pointer
struct mystruct *pptr =
(struct mystruct *)malloc(sizeof (struct mystruct));

Enum, Typedef, Structures and Unions CS 2022, Fall 2011, Lecture 6

O
Structures

struct mystruct {
char name[32];
int age;
char *addr;

};

person.age = 10; // direct access
person.addr = (char *)malloc(64);

pptr->age = 24; // indirect access

strncpy (pptr->name, "foo",32); // through pointer
pptr->addr = NULL;

Enum, Typedef, Structures and Unions CS 2022, Fall 2011, Lecture 6

O
Structures

» Container for related data

» Chunks of memory; syntactic sugar for easy
access.

» May have empty gaps between members

(see #pragma pack)

» Hit: you'll need to use for linked-list assignment

Enum, Typedef, Structures and Unions CS 2022, Fall 2011, Lecture 6

e
Unions

union myunion {
int x;
struct {
char bi;
char b2;
char b3;
char b4;
} b;
+;

union myunion num;

num.x = 1000;
num.b.bl = 5;

Enum, Typedef, Structures and Unions CS 2022, Fall 2011, Lecture 6

e
Unions

» Same memory space interpreted as multiple
types
» Useful for plugins, sclicing network packets etc.

Enum, Typedef, Structures and Unions CS 2022, Fall 2011, Lecture 6

Function Pointers

int min(int a, int b);
int max(int a, int b);

int foo(int do_min) {
int (*func) (int,int); // declaring func. ptr
if (do_min)
func = min;
else

func = max;

return func(10,20); // indirect call

Enum, Typedef, Structures and Unions CS 2022, Fall 2011, Lecture 6

O
Function Poninters

» Points to a function
» Has a *-type of the function it points to

Enum, Typedef, Structures and Unions CS 2022, Fall 2011, Lecture 6

I——————
Renaming Types

» Complex types inconvenient to write over and
over

(enum day *)malloc(sizeof (enum day)

(struct foo *)malloc(sizeof (struct foo)

(union bar *)malloc(sizeof (union bar)

(int (%) (int,int)) ((void *)min)

vV vV v vV

Renaming Types
typedef long old type newtype

typedef enum day day t;
typedef struct foo foo. t;
typedef int (fptr t)(int,int);

Enum, Typedef, Structures and Unions CS 2022, Fall 2011, Lecture 6

Debugging
CS 2022: Introduction to C

Instructor: Hussam Abu-Libdeh

Cornell University
(based on slides by Saikat Guha)

Fall 2011, Lecture 7

Debugging CS 2022, Fall 2011, Lecture 7

I——————
Before we begin...

» A quick note on arrays
» We said that there are similarities between arrays
and pointers
> You can use pointers as if they they are arrays (i.e.
ptr[1])
» But they are not exactly the same

Debugging CS 2022, Fall 2011, Lecture 7

Before we begin...

» ptrl = ptr2; makes sense
» Here we are assigning the value of variable ptr2 to
the variable ptr1
» The values just happen to be memory addresses

» arrayl = array2; does not make sense

» arrayl and array?2 are the base addresses of the
array, but they are not full-fledged pointers (we can
not have them point to different memory locations)

» C does not automatically copy the values of one
array to another (what if they are different in size?)

» So expressions like arrayl = array2; and
char str[100] = argv[1]; will give you
compilation errors

Debugging CS 2022, Fall 2011, Lecture 7

I——————
Print Debugging

» Manually insert debugging statements

» Debugging statements print to screen
» Caution: stdout is buffered. printf output may not

appear before program crashes.
» Solution: stderr is unbuffered.
printf debugging
fprintf (stderr, "%d %p", i, p);
» %d — int
» %s — char *
» %p — any pointer
> see man page for others $§ man 3 printf

Debugging CS 2022, Fall 2011, Lecture 7

NN
debug.c: Trace Information

#include <stdio.h>

int main(int argc, char *xargv) {
fprintf (stderr, "%s:%d:%s\tVs\n", __FILE__,

__LINE__, __FUNCTION__, argv[0]);
fprintf (stderr, "Ys:%d:%s\t%s\n", __FILE__,

__LINE__, __FUNCTION__, argv[1]);
fprintf (stderr, "%s:%d:%s\tls\n", __FILE__,

__LINE__, __FUNCTION__, argv[2]);

trace.c:5:main ./trace
trace.c:8:main hello
trace.c:11:main world

Debugging CS 2022, Fall 2011, Lecture 7

GDB:

>

GNU Debugger

Using printf is fine to get a quick idea about
what might be wrong

Using trace printing can give more info

But, no substitute for debugging!
Debugging allows us to:

» step into the code

» see the execution path of our program

» examine the values of all variables

» set up breakpoints for careful examination

» get a better idea of what is going wrong
GDB is a command-line debugger for many
languages including C

» Not only debugger for C however!

Debugging CS 2022, Fall 2011, Lecture 7

GDB:

»

Commands

b <function> — Breakpoint on entering
function

r <args> — Run program

list — print C code

n — execute one statement

s — execute one step (step into function calls)
c — Continue running program

p <variable> — print the value of a variable
bt — Backtrace the stack

fr <num> — Make stackframe <num> current
frame for printing variables

» q — Quit

> heli — More GDB heli
Debugging CS 2022, Fall 2011, Lecture 7

I——————
GDB: GNU Debugger

[saikat@submit cs113]$ gcc -g -o cmd cmd.c
[saikat@submit c¢s113]$./cmd foo
Segmentation fault

[saikat@submit cs113]$ gdb ./cmd

(gdb) b main
Breakpoint 1 at 0x80483a4: file cmd.c, line 3.
(gdb) r foo

Breakpoint 1, main (argc=1209306428, argv=0x4802f4c6) at
cmd.c:3

3 int main(int argc, char **argv) {

(gdb) n

main (argc=2, argv=0xbfb646e4) at cmd.c:6

6 n = atoi(argv[1]);

(gdb) p argc

$1 =2

Debugging CS 2022, Fall 2011, Lecture 7

I——————
GDB: GNU Debugger

(gdb) p argv([0]

$2 = 0xbfb65c84 "/home/netid/cs113/cmd"

(gdb) ¢
Continuing.

Program received

signal SIGSEGV, Segmentation fault.

0x48045eae in ____strtol_l_internal () from /lib/libc.so.6

(gdb) bt

#0 0x48045eae in
/1ib/1libc.so0.6
#1 0x48045c57 in
#2 0x48043511 in
#3 0x080483eb in
(gdb) fr 3

#3 0x080483eb in

____strtol_l_internal () from
__strtol_internal () from /lib/libc.so.6
atoi () from /lib/libc.so.6

main (argc=2, argv=0xbfb646e4) at cmd.c:7

main (argc=2, argv=0xbfb646e4) at cmd.c:7

7 m = atoi(argv[2]);

(gdb) p argv([2]
$3 = 0x0

Debugging CS 2022, Fall 2011, Lecture 7

I——————
Things to try

» Crash a program by dereferencing a NULL
pointer.

» Crash a program by running out of stack space.

» Crash a program by clobbering the stack (e.g.
the return address).

» Crash a program by calling abort ().
... debug each of these cases using GDB

Debugging CS 2022, Fall 2011, Lecture 7

File and Network /O
CS 2022: Introduction to C

Instructor: Hussam Abu-Libdeh

Cornell University
(based on slides by Saikat Guha)

Fall 2011, Lecture 8

File and Network 1/0 CS 2022, Fall 2011, Lecture 8

I——————
Input and Output

» Keyboard /0O
» Network 1/0

File and Network 1/0 CS 2022, Fall 2011, Lecture 8

Streams

» In many programming languages, input/output
are done in streams

» Data exists on the stream, you consume part of
it and move on
» Examples:

>

>

>

>

| 2

stdout: standard output stream
stderr: standard error output stream
stdin: standard input stream

files

network sockets (network connections)

File and Network 1/0 CS 2022, Fall 2011, Lecture 8

Output to Terminal

» Write a line to stdout

» puts("hello world");
» Write a formatted line to stdout

» printf("Borat says: Hi %s!\n", i);
» Can write to streams other than stdout

» fputs("an error message", stderr);
fprintf (stderr, "Error on value %d\n", i);

File and Network 1/0 CS 2022, Fall 2011, Lecture 8

EEEEEEEEE——————— .
Input from User (Keyboard)

Reading till end of line

char buf[128];

fgets(buf, 128, stdin);

Reading formatted input

int 1, j;

char buf[128];

scanf ("%d %d %s", &i, &j, buf);

File and Network 1/0 CS 2022, Fall 2011, Lecture 8

BN
File 1/0
The C standard library way

» Use fopen/fclose
» Deals with streams

The POSIX way

» Use open/close
» Deals with file descriptors

We will only discuss POSIX 1/0O here. To read more
about C streams, check out the man pages and/or
http://www.cs.cf.ac.uk/Dave/C/CE.html

File and Network 1/0 CS 2022, Fall 2011, Lecture 8

.
File 1/0

Opening and closing files

int fd; // File Descriptor
fd = open("/path/to/file", O_RDWR | O_CREAT);
close(fd);

Reading and Writing

char buf[4096]; int len;
len = read(fd, buf, 4096)
len = write(fd, buf, 4096);

WARNING: Size passed is only a suggestion. May read/write fewer than requested
number of bytes. Return value is number of bytes actually read/written. MUST retry
if not fully read/written.

File and Network 1/0 CS 2022, Fall 2011, Lecture 8

.
File 1/0

» 1seek(fd, numbytes, SEEK CUR);
Seek numbytes from from current location.
» sync();
Ensure bytes hit the disk. Not needed for the most part.
» FILE *ffd = fdopen(fd, "r");
Construct a stream from file-descriptor.
» fprintf(ffd, "format", args);
Write formatted text output to file.

» fscanf(ffd, "format", args);
Read formatted input from the file.

» fclose(ffd);
Close a stream.

File and Network 1/0 CS 2022, Fall 2011, Lecture 8

Network |/O
Opening and closing network sockets
int sock; // File Descriptor

sock = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP);
close(sock);

Internet Addresses

struct sockaddr_in addr;

addr.sin _family = AF_INET;
addr.sin_addr.s_addr = htonl (0x7F000001) ;
addr.sin_port = htons(8080);

Fill the address info manually or get the info
automatically with getaddrinfo ().
See man getaddrinfo

File and Network 1/0 CS 2022, Fall 2011, Lecture 8

.
Network |/O

Server

srv = socket (PF_INET, SOCK_STREAM, IPPROTO_TCP);

err = bind(srv, (struct sockaddr *)&addr, sizeof(addr));
if (err) ...

err = listen(srv, 5);

if (err) ...

cli = accept(srv, NULL, 0);

Client

cli = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP);

err = connect(cli, (struct sockaddr *)&addr, sizeof(addr));
if (err) ...

Read/Write data just as you would with file-descriptors.

File and Network 1/0 CS 2022, Fall 2011, Lecture 8

