What does the Future Hold?

Prof. Kavita Bala and Prof. Hakim Weatherspoon

CS 3410, Spring 2014
Computer Science
Cornell University

Announcements

Final Project
Demo Sign-Up via CMS.

sign up Tuesday, May 13 ${ }^{\text {th }}$ or Wednesday, May $14^{\text {th }}$

CMS submission due:

- Due 6:30pm Wednesday, May 14 ${ }^{\text {th }}$

Announcements

 Prelim3 Results- Mean 58 ± 16.2 (median 60), Max 93
- Pickup in Homework Passback Room (216 Gates)

Prelim2 Scores

Announcements

Prelim3 Results

28-bit $=32$-bit -4 bit Physical Memory

Announcements

Prelim3 Results

28-bit = 32-bit - 4 bit

Announcements

 Prelim3 Results| $2^{2^{33}}=8 \mathrm{CB}$ | 8GB | | $e=32$-bit |
| :---: | :---: | :---: | :---: |
| | | | |
| | | | hysical Page |
| | VR | w X | Number |
| 2^{33} | 0 | | |
| | 1 | | 0x10045 |
| 2^{23} | 0 | | |
| $=2^{20}$ | 0 | | |
| | 1 | | OxC20A3 |
| $2^{20} 1$ | 1 | | 0x4123B |
| $\times 4$ | 1 | | 0x10044 |
| $=222$ | 0 | | |
| 4MB) | | | |

Physical Memory

Announcements

Multi-level PageTable

Announcements

Multi-level PageTable

Announcements

How to improve your grade?

Submit a course evaluation and drop lowest inclass lab score

- To receive credit, Submit before Monday, May $12^{\text {th }}$

Announcements

CacheRace Games Night was great!

- Winner: Team balabot

Adwit Tumuluri and Arjun Biddanda

Announcements CacheRace Games Night was great!

- Winner: Team balabot

Adwit Tumuluri and Arjun Biddanda

Announcements

 CacheRace Games Night was great!- Champion of Champions: 2014 vs 2011 balabot (2014) vs hakimPeterspoon (2011)
balabot
11,919,800

	Core 0	Core 1	Core 2	Core 3
Status	RUNNING	BLOCKED	RRESTE	BAD CALL
Speed	69\%	0\%	0\%	0\%
Crashes	0	0	0	0

loses to (game halted)

Big Picture about the Future

Big Picture

How a processor works? How a computer is organized?

What's next?

More of Moore

Moore's Law

Moore's Law introduced in 1965

- Number of transistors that can be integrated on a single die would double every 18 to 24 months (i.e., grow exponentially with time).
Amazingly visionary
- 2300 transistors, 1 MHz clock (Intel 4004) - 1971
- 16 Million transistors (Ultra Sparc III)
- 42 Million transistors, 2 GHz clock (Intel Xeon) - 2001
- 55 Million transistors, $3 \mathrm{GHz}, 130 \mathrm{~nm}$ technology, 250mm2 die (Intel Pentium 4) - 2004
- 290+ Million transistors, 3 GHz (Intel Core 2 Duo) - 2007
- 731 Million transistors, 2-3Ghz (Intel Nehalem) - 2009
- 1.4 Billion transistors, 2-3Ghz (Intel Ivy Bridge) - 2012

Why Multicore?

Moore's law

- A law about transistors
- Smaller means more transistors per die
- And smaller means faster too

But: Power consumption growing too...

What to do with all these transistors?

Multi-core

Multi-core

http://www.theregister.co.uk/2010/02/03/intel_westmere_ep_preview/

- An Intel Westmere
- 1.17 billion transistors
- 240 square millimeters
- 32 nanometer: transistor gate width
- Bardeen, Brattain, and Shockley - Six processing cores
- Release date: January 2010

The first transistor

- on a workbench at AT\&T Bell Labs in 1947

Multi-core

http://forwardthinking.pcmag.com/none/296972-intel-releases-ivy-bridge-first-processor-with-tri-gate-transistor

The first transistor

- on a workbench at

AT\&T Bell Labs in 1947

- Bardeen, Brattain, and Shockley - Up to eight processing cores
- Release date: April 2012

What to do with all these transistors?

Cloud Computing

Cloud Computing

The promise of the Cloud

- ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction.

cocand

Cloud Computing

The promise of the Cloud

- ubiquitous, convenient, on-demand networkaccess to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction.

䧄ckspacecloud

Windows'Azure

Enirvanix"

cocrala

Cloud Computing

The promise of the Cloud

- ubiquitous, convenient, on-demandnetwork)access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction. NIST Cloud Definition

Requires fundamentals in systems

- Computation
- Networking
- Storage

Cloud Computing

Large organizations considering using the cloud

- New York Times
- Netflix
- Nintendo
- Cornell
- Library of Congress

The more data you have, the harder it is to move

- Switching providers entails paying for bandwidth twice
- Inhibits opportunistic migration

Cloud Computing

How hard is to program with a ExaByte of data?

Titan tech boom, randy katz, 2008

Cloud Computing

Datacenters are becoming a commodity
Order online and have it delivered

- Datacenter in a box: already set up with commodity hardware \& software (Intel, Linux, petabyte of storage)
- Plug data, power \& cooling and turn o
- typically connected via optical fiber

such datacenters

Cloud Computing = Network of Datacenters

Cloud Computing

- How to optimize a global network of data centers?

Cloud Computing = Network of Datacenters

Cloud Computing

Vision
The promise of the Cloud

- A computer utility; a commodity
- Catalyst for technology economy
- Revolutionizing for health care, financial systems, scientific research, and society

However, cloud platforms today

- Entail significant risk: vendor lock-in vs control
- Entail inefficient processes: energy vs performance
- Entail poor communication: fiber optics vs COTS endpoin

Example: Energy and Performance

Why don't we save more energy in the cloud?

No one deletes data anymore!

- Huge amounts of seldom-accessed data

Data deluge

- Google (YouTube, Picasa, Gmail, Docs), Facebook, Flickr
- 100 GB per second is faster than hard disk capacity growth!
- Max amount of data accessible at one time << Total data

New scalable approach needed to store this data

- Energy footprint proportional to number of HDDs is not sustainable

What to do with all these transistors?

Embedded Processors

Where is the Market?

Wherntn?

The sofe
centact was encapoulates the elicternics lovels in tears

The ction and antocray wiretessty
recelves power and sends data to the asem mabllo plone

Security?

Cryptography and security...

 TPM 1.2IBM 4758
Secure Cryptoprocessor

Security?

Stack Smashing...

Before	After
buffer[1024]	"Sumess ; "
	nothing meaningful here
ret address of CalcAverage()	address of printf
rest of the stack	return address of main()
	address of buffer[0]
	rest of the stack

What's next?

Moore's Law

Moore's Law introduced in 1965

- Number of transistors that can be integrated on a single die would double every 18 to 24 months (i.e., grow exponentially with time)

Amazingly visionary

- 2300 transistors, 1 MHz clock (Intel 4004) - 1971
- 16 Million transistors (Ultra Sparc III)
- 42 Million transistors, 2 GHz clock (Intel Xeon) - 2001
- 55 Million transistors, $3 \mathrm{GHz}, 130 \mathrm{~nm}$ technology, 250mm2 die (Intel Pentium 4) - 2004
- 290+ Million transistors, 3 GHz (Intel Core 2 Duo) - 2007
- 731 Million transistors, 2-3Ghz (Intel Nehalem) - 2009
- 1.4 Billion transistors, 2-3Ghz (Intel Ivy Bridge) - 2012

Moore's Law

Parallelism

Dennard scaling: power

Must exploit parallelism for performance

MIMD: multiple instruction, multiple data

- Multicore

SIMD: single instruction, multiple data

- GPUs

My slide from 2008

Do you believe?

-Kavia Bala 2008 Computar Sclance, Cornell University

Is Moore's law dead?

Some thoughts

Bob Colwell
Chief Architect Pentium
DARPA

Introduction
Bill Dally, Nvidia CTO

Talk
The Chip Design Game at the End of Moore's Law Hot Chips, Aug 2013

Singularity

Approximate Computing

Better interfaces

Brain interfaces

Specialized chips
Make it programmable

More

Supercomputers

Petaflops: GPUs/multicore/100s-1000s cores

The Barcelona Supercomputing Center (BSC) - Spain's national supercomputin news today in the supercomputing world, by announcing plans to build the wc ARM-based supercomputer.

BSC is planning to build the lint ARM supercomputer, accelerated by CUDA Gl scientific research. This prototype system will use NVIDLA's quad-core ARM-ba on-a-chip, along with NVIDUA CUDA GPUs on a hardware board designed by SEI variety of scientific research projects.

In their search for more energy efficient architectures in supercomputers, B5C concluded that typical $\times 86$-based CPUs in today's supercomputers consume up to 40 percent of the system's total power. They've also realized that ARM CPUs are much more energy-efficient than $\times 86 \mathrm{CPU}$ from intel and AND.

SECO Hardware Devi

SANTA CLARA, CA .. (Marketwire) -- 10/27/2010 -Tianhe-1A, a new supercomputer revealed today at HPC 2010 China, has set a new performance record of 2.507 petaflops, as measured by the LINPACK benchmark, making it the fastest system in China and in the world today".
Tianhe-1A epitomizes modern heterogeneous computing by coupling massively paralle! GPUs with multi-core CPUs, enabling significant achievements in performance, size and power. The system uses 7,168 NVIDUA Tesla* M2050 GPUs and 14,336 CPUs; it would require more than 50,000 CPUs and twice as much floor space to deliver the same performance using CPUs alone.

The Tanke-14 Supercomputer, located at natoma stpperconputer Corter. Tianilo

More importantly, a 2.507 petaflop system built
entirely with CPUs would consume more than 12 megawatts. Thanks to the use of GPUs in a heterogeneous computing environment, Tianhe-1A consumes only 4.04 megawatts, making it 3 times more power efficient - the difference in power consumption is enough to provide electricity to over 5000 homes for a year.

Petaflops

GPUs for Scientific Computing

GPUs for Neural Nets

Machine Learning using Deep Neural Networks

Input

Result

GPUs for Graphics, of course

What to do with all these transistors?

You could save the world one day?

Smart Dust
\& Sensor Networks

Alan Turing's Bombe Used to crack Germany's enigma machine

ENIAC - 1946
First general purpose electronic computer. Designed to calculate ballistic trajectories

Why?

These days, programs run on hardware...
... more than ever before

Google Chrome
\rightarrow Operating Systems
\rightarrow Multi-Core \& Hyper-Threading
\rightarrow Datapath Pipelines, Caches, MMUs, I/O \& DMA
\rightarrow Busses, Logic, \& State machines
\rightarrow Gates
\rightarrow Transistors
\rightarrow Silicon
\rightarrow Electrons

Why?

Your job as a computer scientist will require knowledge the computer
Research/University

Cornell University

Faculty of Computing and Information Science
Industry

Government

Where to?

CS 3110: Better concurrent programming
CS 4410/4411: The Operating System!
CS 4420/ECE 4750: Computer Architecture
CS 4450: Networking
CS 4620: Graphics
ES 4821: Quantum Computing
MEng
5412—Cloud Computing, 5414—Distr Computing,
5430—Systems Secuirty,
5300-Arch of Larg scale Info Systems
And many more...

Thank you!

If you want to make an apple pie from scratch, you must first create the universe.

- Carl Sagan

