What does the Future Hold?

Prof. Kavita Bala and Prof. Hakim Weatherspoon CS 3410, Spring 2014 Computer Science Cornell University

Final Project Demo Sign-Up via CMS. sign up Tuesday, May 13th or Wednesday, May 14th CMS submission due:

• Due 6:30pm Wednesday, May 14th

Announcements Prelim3 Results

- Mean 58 ± 16.2 (median 60), Max 93
- Pickup in Homework Passback Room (216 Gates)

Physical Memory

Virtual Memory

Multi-level PageTable

Multi-level PageTable

How to improve your grade?

Submit a course evaluation and drop lowest inclass lab score

• To receive credit, Submit before Monday, May 12th

Announcements CacheRace Games Night was great!

• Winner: Team *balabot*

Adwit Tumuluri and Arjun Biddanda

Announcements CacheRace Games Night was great!

• Winner: Team *balabot*

Adwit Tumuluri and Arjun Biddanda

Announcements CacheRace Games Night was great!

Champion of Champions: 2014 vs 2011

balabot (2014) vs hakimPeterspoon (2011)

				🔜 🖾 🕏 🤿 📢) 10:27 AM 👤 Emma 🖞
balabot	le	oses t	0	hakimPeterSpoon
11,919,800	(game halted)			16,252,929
Core 0 Core 1 Core 2 Core 3	Score	Time	Score	Core 0 Core 1 Core 2 Core 3
Status RUNNING BLOCKED ABRESTED BAD CALL				Status RUNNING RUNNING RUNNING RUNNING
Speed 69% 0% 0% Graphes 0 0 0 0				Speed 45% 45% 50% 50%
• • • • • • • • • • • • • • • • • • •				

Big Picture about the Future

Big Picture How a processor works? How a computer is organized?

What's next?

More of Moore

Moore's Law

Moore's Law introduced in 1965

• Number of transistors that can be integrated on a single die would double every 18 to 24 months (i.e., grow exponentially with time).

Amazingly visionary

- 2300 transistors, 1 MHz clock (Intel 4004) 1971
- 16 Million transistors (Ultra Sparc III)
- 42 Million transistors, 2 GHz clock (Intel Xeon) 2001
- 55 Million transistors, 3 GHz, 130nm technology, 250mm2 die (Intel Pentium 4) – 2004
- 290+ Million transistors, 3 GHz (Intel Core 2 Duo) 2007
- 731 Million transistors, 2-3Ghz (Intel Nehalem) 2009
- 1.4 Billion transistors, 2-3Ghz (Intel Ivy Bridge) 2012

Transistor count

Why Multicore?

Moore's law

- A law about transistors
- Smaller means more transistors per die
- And smaller means faster too

But: Power consumption growing too...

What to do with all these transistors?

Multi-core

Multi-core

http://www.theregister.co.uk/2010/02/03/intel_westmere_ep_preview/

The first transistor

- on a workbench at AT&T Bell Labs in 1947
- Bardeen, Brattain, and Shockley

- An Intel Westmere
 - 1.17 billion transistors
 - 240 square millimeters
 - 32 nanometer: transistor gate width
 - Six processing cores
 - Release date: January 2010

Multi-core

http://forwardthinking.pcmag.com/none/296972-intel-releases-ivy-bridge-first-processor-with-tri-gate-transistor

The first transistor

- on a workbench at AT&T Bell Labs in 1947
- Bardeen, Brattain, and Shockley

- An Intel Ivy Bridge
 - 1.4 billion transistors
 - 160 square millimeters
 - 22 nanometer: transistor gate width
 - Up to eight processing cores
 - Release date: April 2012

What to do with all these transistors?

Cloud Computing

The promise of the Cloud

 ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider

The promise of the Cloud

 ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider

The promise of the Cloud

- ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction. NIST Cloud Definition
- Requires fundamentals in systems
 - Computation
 - Networking
 - Storage

Large organizations considering using the cloud

- New York Times
- Netflix
- Nintendo
- Cornell
- Library of Congress

The more data you have, the harder it is to move

- Switching providers entails paying for bandwidth twice
- Inhibits opportunistic migration

How hard is to program with a ExaByte of data?

Titan tech boom, randy katz, 2008

Datacenters are becoming a commodity Order online and have it delivered

- Datacenter in a box: already set up with commodity hardware & software (Intel, Linux, petabyte of storage)
- Plug data, power & cooling and turn c

- typically connected via optical fiber

such datacenters

Cloud Computing = Network of Datacenters

• How to optimize a global network of data centers?

Cloud Computing = Network of Datacenters

Vision

- The promise of the Cloud
 - A computer utility; a commodity
 - Catalyst for technology economy
 - Revolutionizing for health care, financial systems, scientific research, and society

However, cloud platforms today

- Entail significant risk: vendor lock-in vs control
- Entail inefficient processes: energy vs performance
- Entail poor communication: fiber optics vs COTS endpoint

Example: Energy and Performance

Why don't we save more energy in the cloud?

No one deletes data anymore!

- Huge amounts of seldom-accessed data
- Data deluge
 - Google (YouTube, Picasa, Gmail, Docs), Facebook, Flickr
 - 100 GB per second is faster than hard disk capacity growth!
- Max amount of data accessible at one time << Total data
 New scalable approach needed to store this data
 - Energy footprint proportional to number of HDDs is not sustainable

What to do with all these transistors?

Embedded Processors

Where to?

The soft contact lens oncapsulates the electronics

> The sensor can detect glucose levels in tears

The chip and antenna wirelessly receives power and sends data to the users mobile phone

Security?

Cryptography and security... TPM 1.2

IBM 4758 Secure Cryptoprocessor

Security?

Stack Smashing...

Before	After
buffer[1024]	"Success ;)"
	nothing meaningful here
ret address of CalcAverage()	address of printf
 rest of the stack 	return address of main()
	address of buffer[0]
	rest of the stack

What's next?

Moore's Law

Moore's Law introduced in 1965

 Number of transistors that can be integrated on a single die would double every 18 to 24 months (i.e., grow exponentially with time)

Amazingly visionary

- 2300 transistors, 1 MHz clock (Intel 4004) 1971
- 16 Million transistors (Ultra Sparc III)
- 42 Million transistors, 2 GHz clock (Intel Xeon) 2001
- 55 Million transistors, 3 GHz, 130nm technology, 250mm2 die (Intel Pentium 4) – 2004
- 290+ Million transistors, 3 GHz (Intel Core 2 Duo) 2007
- 731 Million transistors, 2-3Ghz (Intel Nehalem) 2009
- 1.4 Billion transistors, 2-3Ghz (Intel Ivy Bridge) 2012

Moore's Law

Parallelism

Dennard scaling: power

Must exploit parallelism for performance

MIMD: multiple instruction, multiple data

Multicore

SIMD: single instruction, multiple data

• GPUs

My slide from 2008

Do you believe?

C Kavita Bala 2008 Computer Science, Cornell University

Is Moore's law dead?

Some thoughts

Bob Colwell Chief Architect Pentium DARPA

Introduction Bill Dally, Nvidia CTO

Talk

The Chip Design Game at the End of Moore's Law Hot Chips, Aug 2013 Singularity

Approximate Computing

Better interfaces Brain interfaces

Specialized chips Make it programmable

More

Supercomputers

Petaflops: GPUs/multicore/100s-1000s cores

WORLD'S FIRST ARM-BASED SUPERCOMPUTER TO LAUNCH IN BA

Printer-friendly version

BY SUMIT GUPTA on Nev 14.2 Software, Supercomputing 1 COMMENT

NVIDIA Tesla GPUs Power World's Fastest Supercomputer

Half the Size, Lower Power and 50% Faster Than World's Top Supercomputer

The Barcelona Supercomputing Center (BSC) - Spain's national supercomputin news today in the supercomputing world, by announcing plans to build the wt ARM-based supercomputer.

BSC is planning to build the first ARM supercomputer, accelerated by CUDA G scientific research. This prototype system will use NVIDIA's quad-core ARM-ba on-a-chip, along with NVIDIA CUDA GPUs on a hardware board designed by SE variety of scientific research projects.

In their search for more energy efficient architectures in supercomputers, BSC concluded that typical x86-based CPUs in today's supercomputers consume up to 40 percent of the system's total power. They've also realized that ARM CPUs are much more energy-efficient than x86 CPUs from Intel and AMD.

SECO Hardware Dev

Kav

SANTA CLARA, CA -- (Marketwire) -- 10/27/2010 --Tianhe-1A, a new supercomputer revealed today at <u>HPC 2010 China</u>, has set a new performance record of 2.507 petaflops, as measured by the LINPACK benchmark, making it the fastest system in China and in the world today¹.

Tianhe-1A epitomizes modern heterogeneous computing by coupling massively parallel GPUs with multi-core CPUs, enabling significant achievements in performance, size and power. The system uses 7,168 NVIDIA® Tesla[®] M2050 GPUs and 14,336 CPUs; it would require more than 50,000 CPUs and twice as much floor space to deliver the same performance using CPUs alone.

The Tianhe-1A Supercomputer, located at National Supercomputer Center, Tianjin

entirely with CPUs would consume more than 12 megawatts. Thanks to the use of GPUs in a heterogeneous computing environment, Tianhe-1A consumes only 4.04 megawatts, making it 3 times more power efficient -- the difference in power consumption is enough to provide electricity to over 5000 homes for a year.

Tianhe-1A was designed by the National University of Defense Technology (NUDT) in China. The system is beyond at National Supercomputer Center in Tianiin and is already fully operational.

Petaflops

Japan and the rest of the world are faced with various problems that are hard to solve. The challenge for us to tackle is how to solve these issues promptly without further delay. To do this, we need to gather wisdom from around the world and accelerate our cutting-edge research in a variety of fields. Supercomputers will be crucial in achieving these goals. Fujitsu is striving to enable a prosperous future for the Earth and its peoples through the development of supercomputers.

One Fujitsu aim is to complete the development of the K computer by 2012 together with RIKEN, in accordance with the High

Kavita Bala, Cornell University

GPUs for Scientific Computing

GPUs for Neural Nets

Machine Learning using Deep Neural Networks

Result

GPUs for Graphics, of course

What to do with all these transistors?

You could save the world one day?

ENIAC - 1946 First general purpose electronic computer. Designed to calculate ballistic trajectories

Alan Turing's Bombe Used to crack Germany's enigma machine

Why? These days, programs run on hardware... ... more than ever before

Google Chrome

- → Operating Systems
- → Multi-Core & Hyper-Threading
- → Datapath Pipelines, Caches, MMUs, I/O & DMA
- → Busses, Logic, & State machines
- \rightarrow Gates
- \rightarrow Transistors
- \rightarrow Silicon
- \rightarrow Electrons

Why? Your job as a computer scientist will require knowledge the computer

Research/University

Cornell University Faculty of Computing and Information Science

Industry

Where to?

CS 3110: Better concurrent programming

CS 4410/4411: The Operating System!

- CS 4420/ECE 4750: Computer Architecture
- CS 4450: Networking
- CS 4620: Graphics
- CS 4821: Quantum Computing
- MEng
- 5412—Cloud Computing, 5414—Distr Computing,
- 5430—Systems Secuirty,
- 5300—Arch of Larg scale Info Systems

And many more...

Thank you!

If you want to make an apple pie from scratch, you must first create the universe.

– Carl Sagan