/0

Prof. Kavita Bala and Prof. Hakim Weatherspoon
CS 3410, Spring 2014
Computer Science

Cornell University

See: Online P&H Chapter 6.9 (5th edition):
http://booksite.elsevier.com/9780124077263/downloads/advance_contents_and_appendices/section_6.9.pdf
Also, Online P&H Chapter 6.5-6 (4th edition)

Administrivia
Project3 submit “souped up” bot to CMS
Project3 Cache Race Games night Monday, May 5", 5pm

e Come, eat, drink, have fun and be merry!
 Location: B11 Kimball Hall

Prelim2: Today, Thursday, May"® in evening

 Time: We will start at 7:30pm sharp, so come early

 Two Locations: OLN155 and URSGO1
* If NetID begins with ‘a’ to ‘g’, then go to OLN155 (Olin Hall rm 155)
* If NetID begins with ‘h’ to ‘z’, then go to URSGO01 (Uris Hall rm G01)
Project4:
 Design Doc due May 7t, bring design doc to mtg May 5-7
* Demos: May 13 and 14
* Will not be able to use slip days

Administrivia
Next 2 weeks

* Prelim2 Today, Thu May 1st: 7:30-9:30
— Olin 155: Netid [a-g]*
— Uris GO1: Netid [h-z]*

* Proj3 tournament: Mon May 5 5pm-7pm (Pizza!)
— Location: Kimball B11

* Proj4 design doc meetings May 5-7 (doc ready for mtg)

Final Project for class
* Proj4 due Wed May 14
* Proj4 demos: May 13 and 14
* Proj 4 release: in labs this week

Goals for Today

Computer System Organization

How does a processor interact with its environment?
* |/O Overview
How to talk to device?
* Programmed I/O or Memory-Mapped I/0
How to get events?
* Polling or Interrupts
How to transfer lots of data?
e Direct Memory Access (DMA)

Next Goal

How does a processor interact with its environment?

Big Picture: Input/Output (1/0)

How does a processor interact with its environment?

compute
jump/branch
targets

memory register

file

addr

d

out

memory

N
PC
Instruction
Fetch

Big Picture: Input/Output (1/0)

How does a processor interact with its environment?

Computer System Organization =

Memory +
Datapath +
Control +

Input +
Output

|/O Devices Enables Interacting with Environment

Device Behavior Partner Data Rate (b/sec)
Keyboard Input Human 100

Mouse Input Human 3.8k

Sound Input Input Machine |3M

Voice Output Output Human 264k

Sound Output Output Human e\

Laser Printer Output Human 3.2M
Graphics Display Output Human 800M — 8G
Network/LAN Input/Output | Machine |100M — 10G
Network/Wireless LAN | Input/Output | Machine |11 -54M
Optical Disk Storage Machine |5-120M
Flash memory Storage Machine |32 -200M
Magnetic Disk Storage Machine |800M — 3G

Attempt#1: All devices on one interconnect

Replace all devices as the interconnect changes

e.g. keyboard speed ==

main memory speed ?!

Unified Memory and I/O Interconnect

A A A T\ ,}

. \
wenery] [(5 =,
Dis_play BIN Keyboa rd Network_l

Attempt#2: 1/0O Controllers

Decouple I/O devices from Interconnect

Enable smarter I/O interfaces

Unified Memory and I/O Interconnect

Memory /O /O /O 1/0
Controller Controller Controller Controller Controller
* 88 ﬁ '?.

BINIEL

Disk

Keyboa rd

Network

Attempt#3: I/O Controllers + Bridge

Separate high-performance processor, memory, display
interconnect from lower-performance interconnect

CoreO

Corel

Cache

Cache

{ {

High Performance

%(‘6%r|'
)

Lower Performance

$InterconneLt Legacy Interconnect $
Memory /O /O /O /O
Controller Controller Controller Controller Controller
* 8@ ﬁ '2.

BINIEL

Disk

Keyboa rd

Network

SIVEICINEES

Width = number of wires
Transfer size = data words per bus transaction

Synchronous (with a bus clock)
or asynchronous (no bus clock / “self clocking”)

Bus Types

Processor — Memory (“Front Side Bus”. Also QPI)
* Short, fast, & wide

* Mostly fixed topology, designed as a “chipset”
— CPU + Caches + Interconnect + Memory Controller

/O and Peripheral busses (PCl, SCSI, USB, LPC, ...)

* Longer, slower, & narrower

* Flexible topology, multiple/varied connections

* Interoperability standards for devices

e Connect to processor-memory bus through a bridge

Attempt#3: I/O Controllers + Bridge

Separate high-performance processor, memory, display
interconnect from lower-performance interconnect

Intel Xeon 5300
processor

FB DDR2 667
(5.3 GB/sec) Memory PCle x16 (or 2 PCle x8)

Main controller (4 GB/sec)
hub

(north bridge)
5000P

' g
Serial ATA 2 GB/sec)|(2 GB/sec)

(300 MB/sec)

] —
PCle x4

1 GB/sec
PCle x4

1 110 1GB/sec
controller PCI-X bus
LPC hub (1 GB/sec)

(1 MB/sec) (south bridge) PCI-X bus
Keyboard, Entreprise South (1 GB/sec)

mouse, ... Brldge 2
UsB 2.0 Parallel ATA

(60 MB/sec) (100 MB/sec) @

memory
DIMMs

Example Interconnects

Name Use Devics per | Channel Data Rate
channel Width (B/sec)
Firewire 800 External | 63 4 100M
USB 2.0 External | 127 2 60M
USB 3.0 External | 127 2 625M
Parallel ATA Internal |1 16 133M
Serial ATA (SATA) Internal |1 4 300M
PCl 66MHz Internal |1 32-64 533M
PCl Express v2.x Internal |1 2-64 16G/dir
Hypertransport v2.x |Internal |1 2-64 25G/dir
QuickPath (QPI) Internal |1 40 12G/dir

Interconnecting Components

—_

Interconnects are (were?) busses
 parallel set of wires for data and control

e o | e.g. Intel
(] r —

shared channe Xeon

— multiple senders/receivers

— everyone can see all bus transactions
* bus protocol: rules for using the bus wires_-

1 e.g. Intel

Alternative (and increasingly common):- Nehalem

* dedicated point-to-point channels -

l_\LLCIIIPL'lT_I'o I/ & VIV ViIGIJ ! JIE IUBC .

NUMA

Remove bridge as bottleneck with Point-to-point interconnect:
E.g. Non-Uniform Memory Access (NUMA)

- .91
-
- ej’
-)
Kl - r—
- -
- -:_ - q
|
- -
- ej'
q .
. Memory
i = Intel’ Scalable

K . Hemory&mefJ

IELGENENE

Diverse |/O devices require hierarchical
interconnect which is more recently transitioning
to point-to-point topologies.

Next Goal

How does the processor interact with 1/0 devices?

|/O Device Driver Software Interface

Set of methods to write/read data to/from device and control device
Example: Linux Character Devices

// Open a toy " echo " character device
int fd = open("/dev/echo", O RDWR);

// Write to the device
char write buf[] = "Hello World!";
write(fd, write_buf, sizeof(write_buf));

// Read from the device
char read buf [32];
read(fd, read_buf, sizeof(read_buf));

// Close the device
close(fd);

// Verify the result
assert(strcmp(write buf, read buf)==0);

|/O Device API
Typical I/O Device API

* a set of read-only or read/write registers

ﬁommand registers

* writing causes device to do something

Status registers

~

* reading indicates what device is doing, error codes, ...

Data registers

 Write: transfer data to a device
\ e Read: transfer data from a device

%

Every device uses this API

|/O Device API
Simple (old) example: AT Keyboard Device

N
L LEELT T FEEE

e

A
dadan TE B
ﬁwwwﬂﬂﬁ&r~\f**

ALLTTTETT P ER |

8-bit Status: | pE | TO |auxB|LoCK| AL2

8-bit Command: . out
o) npu npu
OxAA = “self test Buffer Buffer

OxAE = “enable kbd” S Stats
OxED = “set LEDs”

8-bit Data:
scancode (when reading)
LED state (when writing) or ...

Communication Interface
Q: How does pregram- -OS- code talk to device?

A: special instructions to talk over special busses
Interact with cmd, status, and

| data device registers directly
* inb Sa, 0x64 < kbd status register

* outb $a, 0x60 < kbd data register
* Specifies: device, data, direction

Programmed 1/0O

-[Protection: only allowed in kernel mode]

Kernel boundary crossinging is expensive

*x86: Sa implicit; also inw, outw, inh, outh, ...

Communication Interface
Q: How does pregram- -OS- code talk to device?
A: Map registers into virtual address space
Memory-mapped |/O <——Faster. Less boundary crossing

* Accesses to Fertain addresses]redirected to 1/O devices
* Data goes over the memory bus

* Protection: via bits in pagetable entries

* OS+MMU+devices configure mappings

Memory-Mapped 1/0

OXFFFF FFFF

L
Controller
OxOOFF FFFF Display
=00
Controller | _ _

Virtual Disk
Address Physical
Space Address /O

Space Controller

Keyboard

il

/0

| >

Controller Network_l

0x0000 0000 0x0000 0000

Device Drivers

Programmed I/O Memory Mapped 1/0O
Polling examples, struct kbd {
BUF mmapI/O more char status, pad[3];
efficient
char read_kbd() char data, pad[3];
{ ¥
do { kbd *k = mmap(...);x\\
sleep(); syscall
status =[inb(0x64); char read_kbd()
} while(!(status &11)); {
- do {
return|inb(0x60) sleep();
} NO - status = k->status;
Sysca” Sysca” } Whil@(!(Status & 1));
return k->data;

4

Comparing Programmed 1/0 vs Memory Mapped I/0

Programmed I/0O
* Requires special instructions
* Can require dedicated hardware interface to devices
* Protection enforced via kernel mode access to instructions

* Virtualization can be difficult

Memory-Mapped I/0O
* Re-uses standard load/store instructions
* Re-uses standard memory hardware interface
* Protection enforced with normal memory protection scheme

* Virtualization enabled with normal memory virtualization
scheme

IELGENENE

Diverse |/O devices require hierarchical
interconnect which is more recently transitioning
to point-to-point topologies.

Memory-mapped I/O is an elegant technique to
read/write device registers with standard
load/stores.

Next Goal

How does the processor know device is ready/done?

Communication Method

Q: How does program learn device is ready/done?

IELGENENE

Diverse |/O devices require hierarchical
interconnect which is more recently transitioning
to point-to-point topologies.

Memory-mapped I/O is an elegant technique to
read/write device registers with standard
load/stores.

Interrupt-based |/O avoids the wasted work in
polling-based 1/0 and is usually more efficient

Next Goal

How do we transfer a lot of data efficiently?

|/O Data Transfer

How to talk to device?
* Programmed |/O or Memory-Mapped I/0O

How to get events?
* Polling or Interrupts

How to transfer lots of data?

disk->cmd = READ_4K_SECTOR; v,
disk->data = 12; Very,

Expensive
while (!(disk->status & 1) { J
for (1 = 0..4k)

buf[i] = disk->data;

|/O Data Transfer

Programmed I/O xfer: Device <=2 CPU é? RAM
for(i=1..n) CPU =2 RAM

* CPU issues read request V
e Device puts data on bus w

& CPU reads into registers ?

ead from Disk)

CPU writes data to memory | \yrite to Memory

e Not efficient Everything interrupts CPU
\Wastes CPU)

|/O Data Transfer

Q: How to transfer lots of data efficiently?
A: Have device access memory directly

[Direct memory access (DIVIA)]

* 1) OS provides starting address, length
e 2) controller (or device) transfers data autonomously
 3) Interrupt on completion / error

DMA: Direct Memory Access

Programmed I/O xfer: Device <=2 CPU é? RAM
for(i=1..n) CPU =2 RAM

* CPU issues read request V
e Device puts data on bus W

& CPU reads into registers

* CPU writes data to memory

DMA: Direct Memory Access
Programmed I/O xfer: Device &<—-> CPU é? RAM

for(i=1..n) CPU [<— RAM
* CPU issues read request v
e Device puts data on bus W

& CPU reads into registers

* CPU writes data to memory 3) Interrupt after done

DMA xfer: Device €> RAM [V <-'--'--'--Ei S
* CPU sets up DMA request 1) Setup 2) Transfer

e for(i=1...n)
Device puts data on bus
& RAM accepts it

* Device interrupts CPU after done

DMA Example

DMA example: reading from audio (mic) input

* DMA engine on audio device... or I/O controller ...

int dma_size = 4*PAGE_SIZE;
int *buf = alloc dma(dma size);

dev->mic_dma baseaddr = (int)buf;
dev->mic_dma count = dma_len;

dev->cmd = DEV_MIC_ INPUT |
DEV_INTERRUPT_ENABLE | DEV_DMA ENABLE;

or

DMA Issues (1): Addressing

RAM: physical addresses

Programs: virtual addresses

ssue #1: DMA meets Virtual Memory

CPU

MMU

>

DISK \

RAM

DMA Example

DMA example: reading from audio (mic) input

* DMA engine on audio device... or I/O controller ... or

int dma_size = 4*PAGE_SIZE;
void *buf = alloc dma(dma_size);

dev->mic_dma baseaddr = virt to phys(buf);
dev->mic_dma count = dma_len;

dev->cmd = DEV_MIC INPUT |
DEV_INTERRUPT_ENABLE | DEV_DMA ENABLE;

DMA Issues (1): Addressing

RAM: physical addresses

Programs: virtual addresses

ssue #1: DMA meets Virtual Memory

CPU

MMU

>

ALY

@[uTLB

DISK l

DMA Issues (2): Virtual Mem
Issue #2: DMA meets Paged Virtual Memory

DMA destination page
may get swapped out

CPU

>

ALY

DMA Issues (4): Caches

ssue #4: DMA meets Caching

DMA-related data could

CPU

L2

e cached in L1/L2

e DMA to Mem: cache is now stale

* DMA from Mem: dev gets stale data

>

ALY

DMA Issues (4): Caches
ssue #4: DMA meets Caching

DMA-related data could cru || L2 c—

RAM
e cached in L1/L2

 DMA to Mem: cache is now stale ‘
* DMA from Mem: dev gets stale data

Solution 2: (hardware coherence aka snooping)
e cache listens on bus, and conspires with RAM
 DMA to Mem: invalidate/update data seen on bus

* DMA from mem: cache services request if possible,
otherwise RAM services

IELGENENE

Diverse |/O devices require hierarchical interconnect
which is more recently transitioning to point-to-point
topologies.

Memory-mapped I/O is an elegant technique to
read/write device registers with standard load/stores.

Interrupt-based 1/0 avoids the wasted work in
polling-based I/O and is usually more efficient.

Modern systems combine memory-mapped 1/0,
interrupt-based I/O, and direct-memory access
to create sophisticated 1/0 device subsystems.

/0 Summary

How to talk to device?

Programmed I/O or Memory-Mapped I/O
How to get events?

Polling or Interrupts

How to transfer lots of data?

DMA

