/O

Prof. Kavita Bala and Prof. Hakim Weatherspoon
CS 3410, Spring 2014
Computer Science

Cornell University

See: Online P&H Chapter 6.9 (5th edition):
http://booksite.elsevier.com/9780124077263/downloads/advance_contents_and_appendices/section_6.9.pdf
Also, Online P&H Chapter 6.5-6 (4th edition)

Goals for Today

Computer System Organization

How does a processor interact with its environment?

Goals for Today

Computer System Organization

How does a processor interact with its environment?
e |/O Overview
How to talk to device?
* Programmed |/O or Memory-Mapped I/0O
How to get events?)
* Polling or Interrupts

How to transfer lots of data?
\ °* Direct Memory Access (DMA))

Next Goal

How does a processor interact with its environment?

(J (10C =HelfelINc e (11 O] - A [] =f elaiaallian

compute
jump/branch
targets
<
memory [-
reg.lster > Alu A A
) file
N (aa)]
> addr
]
PC 12 control of=>d, dou =
memory
Y \—) extend g
detect
hazard
Instruction — — — [Write-
Fetch Decode © Execute o Memory S| Back

Big Picture: Input/Output (1/0)

How does a processor interact with its environment?

Computer System Organization =

Datapath +
Control +

Memory +

Input +
Output

|/O Devices Enables Interacting with Environment

Device Behavior Partner Data Rate (b/sec)

|/O Devices Enables Interacting with Environment

Device Behavior Partner Data Rate (b/sec)
Keyboard Input Human 100

Mouse Input Human 3.8k

Sound Input Input Machine |3M

Voice Output Output Human 264k

Sound Output Output Human 8M

Laser Printer Output Human 3.2M
Graphics Display Output Human 800M - 8G
Network/LAN Input/Output | Machine |100M —10G
Network/Wireless LAN | Input/Output | Machine |11 -54M
Optical Disk Storage Machine |5-120M
Flash memory Storage Machine |32 -200M
Magnetic Disk Storage Machine |800M — 3G

Attempt#1: All devices on one interconnect

Replace all devices as the interconnect changes

e.g. keyboard speed ==

main memory speed ?!

Unified Memory and 1/O Interconnect

Memory

A

[

A

5

A

Display

Disk

I:II:II:II:II:II:II:II:I
00000000
0oooooooo

| Keyboard \

Network_l

Attempt#2: 1/0 Controllers

Decouple I/0O devices from Interconnect

Enable smarter I/O interfaces

Unified Memory and 1/O Interconnect

Memory /0 /0 /0 /0

Controller Controller | | Controller | | Controller | | Controller

Memory ‘ 8 8 oooooooo D?D
1 _ _ O0oo0ooooa

Display Disk | Keyboard \ Network_l

Attempt#3: I/O Controllers + Bridge

Separate high-performance processor, memory, display
interconnect from lower-performance interconnect

CoreO

Cache

{

Corel

Cache

{

High Performance

Lower Performance

I %Q_|_

Interconnect N2 $ Legacy Interconnect $
Memory /O /O /O /O
Controller Controller | | Controller Controller Controller
Memory ‘ 8 8 EEEEEEEE D?D

=1 _ _ O0oo0ooooa
Display Disk | Keyboard l Network

Bus Parameters

Width = number of wires
Transfer size = data words per bus transaction

Synchronous (with a bus clock)
or asynchronous (no bus clock / “self clocking”)

Bus Types

Processor — Memory (“Front Side Bus”. Also QPI)
e Short, fast, & wide
* Mostly fixed topology, designed as a “chipset”

— CPU + Caches + Interconnect + Memory Controller

/0 and Peripheral busses (PCI, SCSI, USB, LPC, ...)

* Longer, slower, & narrower

* Flexible topology, multiple/varied connections

* Interoperability standards for devices

e Connect to processor-memory bus through a bridge

Attempt#3: I/O Controllers + Bridge

Separate high-performance processor, memory, display
interconnect from lower-performance interconnect

Intel Xeon 5300
processor—

—_—— e — ——

| Intel Xeon 5300 |

processor l

ol

Side Bus (1333 MHz, 10.5 GB/sec)

V'C

FB DDR2 667
(5.3 GB/sec) / Memory PCle x16 (or 2 PCle x8)
Mai controller (4 GB/sec) ﬂ/ S
ain / hub
memory / (north bridge) || —
DIMMs [5000P 5
~—~ Serial ATA v Jory] o “ <
eria (2 GB/sec)|(2 GB/pec (
| (300 MB/sec ! do W
Disk
| PCle x4 P@(’
__ (1 GB/sec)
PCle x4
1 GB
C DiSk/ e (1 GB/sec)
controller PCI-X bus
- LPC hub (1 GB/sec)
(1 MB/sec) (south bridge) PCI-X b
Keyboard, Entreprise South (1 GB/sgg)
mouse, ... Bridge 2
USB 2.0 Parallel ATA
(60 MB/sec) (100 MB/sec) CD/DVD

Example Interconnects

Name Use Devics per | Channel Data Rate
channel |Width (B/sec)

Firewire 800 External | 63 4 100M

USB 2.0 External | 127 2 60M

Parallel ATA Internal |1 16 133M

Serial ATA (SATA) Internal |1 4 300M

PCl 66 MHz Internal |1 32-64 533M

PCl Express v2.x Internal |1 2-64 16G/dir

Hypertransport v2.x |Internal |1 2-64 25G/dir

QuickPath (QPI) Internal |1 40 12G/dir

Example Interconnects

Name Use Devics per | Channel Data Rate
channel |Width (B/sec)
Firewire 800 External | 63 4 100M
USB 2.0 External | 127 2 60M
USB 3.0 External 625M
Parallel ATA Internal |1 16 133M
Serial ATA (SATA) Internal |1 4 300M
PCl 66 MHz Internal |1 32-64 533M
PCl Express v2.x Internal |1 2-64 16G/dir
Hypertransport v2.x |Internal |1 2-64 25G/dir
QuickPath (QPI) Internal |1 40 12G/dir

Interconnecting Components

—_

Interconnects are (were?) busses
 parallel set of wires for data and control
e.g. Intel
shared channel ~ Xeon
— multiple senders/receivers
— everyone can see all bus transactions
* bus protocol: rules for using the bus wires_
1 e.g. Intel

Alternative (and increasingly common):- Nehalem

* dedicated point-to-point channels -

Attempt#4: 1/0 Controllers+Bridge+ NUMA

Remove bridge as bottleneck with Point-to-point interconnect:
E.g. Non-Uniform Memory Access (NUMA)

- Intel’ Scalable
Memory Buffer

Takeaways

Diverse I/O devices require hierarchical
interconnect which is more recently transitioning
to point-to-point topologies.

Next Goal

How does the processor interact with |/O devices?

|/O Device Driver Software Interface

Set of methods to write/read data to/from device and control device
Example: Linux Character Devices

// Open a toy " echo " character device
int fd = open("/dev/echo", O RDWR);

// Write to the device
char write buf[] = "Hello World!";
write(fd, write buf, sizeof(write buf));

// Read from the device
char read buf [32];
read(fd, read buf, sizeof(read buf));

// Close the device
close(fd);

// Verify the result
assert(strcmp(write buf, read buf)==0);

|/O Device API
Typical I/O Device API

* a set of read-only or read/write registers

ﬁommand registers

e writing causes device to do something

Status registers

~

* reading indicates what device is doing, error codes, ...

Data registers

 Write: transfer data to a device
\ e Read: transfer data from a device

/

Every device uses this API

|/O Device API
Simple (old) example: AT Keyboard Device

8-bit Status: [PE | TO |AUXB|[LOCK] AL2 | SYSF] IBS | OBS

8-bit Command: / \

Cu ” Input Input
OxAA = “self test Buffer Buffer

OxAE = “enable kbd” Stats Stats
OxED = “set LEDs”

8-bit Data:
scancode (when reading)
LED state (when writing) or ...

Communication Interface
Q: How does pregram- -OS- code talk to device?

A: special instructions to talk over special busses
Interact with cmd, status, and

. data device registers directly
* inb Sa, 0x64 <—— kpd status register

e outbSa,0x60

Programmed 1/0O

kbd data register
» Specifies: device, data, direction

-[Protection: only allowed in kernel mode]

Kernel boundary crossinging is expensive

*x86: Sa implicit; also inw, outw, inh, outh, ...

Communication Interface
Q: How does pregram- -OS- code talk to device?
A: Map registers into virtual address space
Memory-mapped |/O <——Faster. Less boundary crossing

e Accesses to [:ertain addresses]redirected to 1/0 devices
e Data goes over the memory bus

* Protection: via bits in pagetable entries

 OS+MMU+devices configure mappings

Memory-Mapped I/0

OXFFFF FFFF

/O | \
Controller -
OxOOFF FFFF Display
=00
. Controller | __ __
Virtual Disk
Address Physical
Space Address /0 | [22885552
Space Controller | Im——
| Keyboard \
/0 D?ﬂ
— | Controller
on Network_l

0x0000 0000 0x0000 0000

Device Drivers

Programmed 1/0O Memory Mapped I/0O
Polling examples, struct kbd {
BUF ',ﬂmapl/o more char status, pad[3];
efficient
char read_kbd() char data, pad[3];
{ }s
do { kbd *k = mmap(...);x\\
sleep(); syscall
status =[inb(0x64); char read_kbd()
} while(!(status &11)); {
-~ do {
return|inb(0x60); sleep();
} V NO status = k->status;
syscall syscall + while(!(status & 1));
return k->data;

4

Comparing Programmed 1/O vs Memory Mapped I/0

Programmed |/O
* Requires special instructions
* Canrequire dedicated hardware interface to devices
* Protection enforced via kernel mode access to instructions

e Virtualization can be difficult

Memory-Mapped I/0O
e Re-uses standard load/store instructions
* Re-uses standard memory hardware interface
* Protection enforced with normal memory protection scheme

* Virtualization enabled with normal memory virtualization
scheme

Takeaways

Diverse I/O devices require hierarchical
interconnect which is more recently transitioning
to point-to-point topologies.

Memory-mapped I/O is an elegant technique to
read/write device registers with standard
load/stores.

Next Goal

How does the processor know device is ready/done?

Communication Method

Q: How does program learn device is ready/done?

A: Polling: Periodically check 1/O status register

 |f device ready, do operation
* |If device done, ...
* If error, take action

Pro? Con?

* Predictable timing & inexpensive

char read kbd()
{
do {
sleep();
status = inb(0x64);
} while(!(status & 1));

return inb(0x60); }

e But: wastes CPU cycles if nothing to do

e Efficient if there is always work to do (e.g. 10Gbps NIC)

Common in small, cheap, or real-time embedded systems

Sometimes for verv active devices too...

Communication Method
Q: How does program learn device is ready/done?
A: Interrupts: Device sends interrupt to CPU

* Cause register identifies the interrupting device
* interrupt handler examines device, decides what to do

Priority interrupts

* Urgent events can interrupt lower-priority interrupt handling
e OS can -disable- defer interrupts

Pro? Con?

* More efficient: only interrupt when device ready/done
* Less efficient: more expensive since save CPU context
— CPU context: PC, SP, registers, etc

e Con: unpredictable b/c event arrival depends on other
devices’ activity

Takeaways

Diverse I/O devices require hierarchical
interconnect which is more recently transitioning
to point-to-point topologies.

Memory-mapped I/O is an elegant technique to
read/write device registers with standard
load/stores.

Interrupt-based 1/0O avoids the wasted work in
polling-based 1I/O and is usually more efficient

Next Goal

How do we transfer a lot of data efficiently?

|/O Data Transfer

How to talk to device?
* Programmed |/O or Memory-Mapped 1/0O

How to get events?
* Polling or Interrupts

How to transfer lots of data?

disk->cmd = READ_4K_SECTOR; Very,

Very,
Expensive

while (!(disk->status & 1) { F
for (1 = 0..4k)
buf[i] = disk->data;

|/O Data Transfer

Programmed |/O xfer: Device &= CPU né? RAM

for(i=1..n)
* CPU issues read request

e Device puts data on bus
& CPU reads into registers

 CPU writes data to memory
* Not efficient

CPU

\4

RAM

(Read from Disk
Write to Memory

\Wastes CPU

Everything interrupts CPU

\

J

|/O Data Transfer

Q: How to transfer lots of data efficiently?
A: Have device access memory directly

[Direct memory access (DI\/IA)]

* 1) OS provides starting address, length
e 2) controller (or device) transfers data autonomously
* 3) Interrupt on completion / error

DMA: Direct Memory Access

Programmed |/O xfer: Device &= CPU né? RAM
for(i=1..n) Py RAM

* CPU issues read request \4

e Device puts data on bus w

& CPU reads into registers
 CPU writes data to memory

DMA: Direct Memory Access
Programmed |/O xfer: Device <=2 CPU né? RAM

for(i=1..n) CPU | RAM
 CPU issues read request v
e Device puts data on bus w

& CPU reads into registers

* CPU writes data to memory 3) Interrupt after done

RAM

DMA xfer: Device €> RAM LY
e CPU sets up DMA request 1) Setup
e for(i=1...n)
Device puts data on bus
& RAM accepts it

* Device interrupts CPU after done

2) Transfer

DMA Example

DMA example: reading from audio (mic) input

 DMA engine on audio device... or I/O controller ... or

int dma_size = 4*PAGE SIZE;
int *buf = alloc dma(dma_size);

dev->mic_dma baseaddr = (int)buf;
dev->mic dma count = dma len;

dev->cmd = DEV_MIC INPUT |
DEV_INTERRUPT ENABLE | DEV DMA ENABLE;

DMA Issues (1): Addressing

RAM: physical addresses

Programs: virtual addresses

Solution: DMA uses physical addresses
e OS uses physical address when setting up DMA
e OS allocates contiguous physical pages for DMA
e Or: OS splits xfer into page-sized chunks

(many devices support DMA “chains” for this reason)

ssue #1: DMA meets Virtual Memory

CPU

MMU

DISK

RAM

DMA Example

DMA example: reading from audio (mic) input

 DMA engine on audio device... or I/O controller ... or

int dma_size = 4*PAGE SIZE;
void *buf = alloc dma(dma_size);

dev->mic_dma_baseaddr = virt to phys(buf);
dev->mic dma count = dma len;

dev->cmd = DEV_MIC INPUT |
DEV_INTERRUPT ENABLE | DEV DMA ENABLE;

DMA Issues (1): Addressing

RAM: physical addresses

Programs: virtual addresses

Solution 2: DMA uses virtual addresses

ssue #1: DMA meets Virtual Memory

CPU

MMU

* OS sets up mappings on a mini-TLB

DISK

RAM

uTLB

DMA Issues (2): Virtual Mem
Issue #2: DMA meets Paged Virtual I\/Iemory

RAM

DMA destination page CPU

may get swapped out

Solution: Pin the page before initiating DMA

Alternate solution: Bounce Buffer

e DMA to a pinned kernel page, then memcpy
elsewhere

DMA Issues (4): Caches
Issue #4: DMA meets Caching

DMA-related data could CPU ([L2 RAM

be cached in L1/L2

* DMA to Mem: cache is now stale
* DMA from Mem: dev gets stale data

Solution: (software enforced coherence)
* OS flushes some/all cache before DMA begins
e Or: don't touch pages during DMA

* Or: mark pages as uncacheable in page table entries
— (needed for Memory Mapped 1/0 too!)

DMA Issues (4): Caches
Issue #4: DMA meets Caching

DMA-related data could CPU || L2

RAM

be cached in L1/L2

* DMA to Mem: cache is now stale
* DMA from Mem: dev gets stale data

Solution 2: (hardware coherence aka snooping)
e cache listens on bus, and conspires with RAM
 DMA to Mem: invalidate/update data seen on bus

* DMA from mem: cache services request if possible,
otherwise RAM services

Takeaways

Diverse |/O devices require hierarchical interconnect
which is more recently transitioning to point-to-point
topologies.

Memory-mapped |I/O is an elegant technique to
read/write device registers with standard load/stores.

Interrupt-based I/O avoids the wasted work in
polling-based I/0O and is usually more efficient.

Modern systems combine memory-mapped |/0,
interrupt-based 1/0, and direct-memory access
to create sophisticated I/O device subsystems.

/0 Summary

How to talk to device?

Programmed I/O or Memory-Mapped I/O
How to get events?

Polling or Interrupts

How to transfer lots of data?

DMA

Administrivia
Project3 submit “souped up” bot to CMS
Project3 Cache Race Games night Monday, May 5", 5pm

e Come, eat, drink, have fun and be merry!
 Location: B11 Kimball Hall

Prelim2: Today, Thursday, May" in evening

e Time: We will start at 7:30pm sharp, so come early

e Two Locations: OLN155 and URSGO1
* If NetID begins with ‘a’ to ‘g’, then go to OLN155 (Olin Hall rm 155)
* If NetID begins with ‘h’ to ‘2, then go to URSGO01 (Uris Hall rm G01)
Project4:
* Design Doc due May 7, bring design doc to mtg May 5-7
* Demos: May 13 and 14
* Will not be able to use slip days

Administrivia
Next 2 weeks

* Prelim2 Today, Thu May 15t : 7:30-9:30
— Olin 155: Netid [a-g]*
— Uris GO1: Netid [h-z]*

* Proj3 tournament: Mon May 5 5pm-7pm (Pizza!)
— Location: Kimball B11

* Proj4 design doc meetings May 5-7 (doc ready for mtg)

Final Project for class
* Proj4 due Wed May 14
* Proj4 demos: May 13 and 14
* Proj 4 release: in labs this week
« Remember: No slip days for PA4

