Synchronization 3 and GPUs

CS 3410, Spring 2014
Computer Science
Cornell University

See P&H Chapter: 6.7

Administrivia
Next 3 weeks

* Prelim2 Thu May 15t: 7:30-9:30
— Olin 155: Netid [a-g]*
— Uris GO1: Netid [h-z]*
* Proj3 tournament: Mon May 5 5pm-7pm (Pizza!)
* Proj4 design doc meetings May 5-7 (doc ready for mtg)

Final Project for class
* Proj4 due Wed May 14
* Proj4 demos: May 13 and 14
* Proj 4 release: in labs this week
 Remember: No slip days for PA4

Academic Integrity

All submitted work must be your own

e OK to study together, but do not share soln’s
 Cite your sources

Project groups submit joint work

 Same rules apply to projects at the group level
* Cannot use of someone else’ s soln

Closed-book exams, no calculators

e Stressed? Tempted? Lost?
e Come see us before due date!

Plagiarism in any form will not be tolerated

Synchronization

Threads

Critical sections, race conditions, and mutexes
Atomic Instructions

e HW support for synchronization

* Using sync primitives to build concurrency-safe data
structures

Example: thread-safe data structures
Language level synchronization
Threads and processes

Synchronization in MIPS

Load linked: LL rt, offset(rs)

Store conditional: SC rt, offset(rs)

e Succeeds if location not changed since the LL
— Returns 1inrt

* Fails if location is changed
— Returns O in rt

Any time a processor intervenes and modifies the value
in memory between the LL and SC instruction, the SC
returns 0 in StO

Use this value O to try again

Mutex from LL and SC

Linked load / Store Conditional
m = 0; // 0 means lock is free; otherwise, if m ==1, then lock locked
mutex_lock(int m) {

while(test and set(&m)){}

int test and set(int *m) {

old = *m;| LL Atomic

return old;

Mutex from LL and SC

Linked load / Store Conditional
m =0;
mutex_lock(int *m) {
while(test and set(m)){}
}
int test and set(int *m) {
try:
LI $to, 1
LL $t1, 0($a0)
SC $t0, 0(%$ao)
BEQZ $t0, try
MOVE $vO, $t1

Mutex from LL and SC

m =0;
mutex_lock(int *m) {
test and set:
LI $to, 1
LL $t1, 0($a0)
BNEZ $t1, test and set
SC $t0, 0(%$ao)
BEQZ $t0, test and set
}
mutex_unlock(int *m) {
*m = 0;

¥

Mutex from LL and SC

m = 0; This is called a
mutex_lock(int *m) { Spin lock
test_and_set: / Aka spin waiting
LI $tOo, 1
LL $t1, 0($a0)
BNEZ $t1, test and set
SC $t0, 0(%$ao)
BEQZ $t0, test and set
}

mutex_unlock(int *m) {
SW $zero, 0(%a0)

¥

m =0;

mutex_ lock(int *m) {

Mutex from LL and SC

Time | Thread A Thread B Thread | Thread | Thread | Thread | Mem
Step AS$t0 | ASt1 B $t0 B $t1 | M[$a0]
0 0

1 try: LI $t0, 1 try: LI $t0, 1

2 LL $t1, 0($a0) |LL $t1, 0($a0)

3 BNEZ $t1, try | BNEZ $t1, try

4 SC $t0, 0($a0) | SC $t0, 0 ($a0)

5 BEQZ $t0, try | BEQZ $tO, try

6

m =0;

mutex_ lock(int *m) {

Mutex from LL and SC

Time | Thread A Thread B Thread | Thread | Thread | Thread | Mem
Step AS$t0 | A$t1 B $t0 B $t1 | M[$a0]
0 0

1 try: LI $tO, 1 try: LI $tO, 1 1 1 0

2 LL $t1, 0($a0) |LL $t1, 0($a0) |1 0 1 0 0

3 BNEZ $t1, try | BNEZ $t1,try |1 0 1 0 0

4 SC $t0, 0($a0) | SC $t0, 0 ($a0) | O 0 1 0 1

5 BEQZ $t0, try | BEQZ $t0,try |0 0 1 0 1

6

m =0;

mutex_ lock(int *m) {

Mutex from LL and SC

Time | Thread A Thread B Thread | Thread | Thread | Thread | Mem
Step AS$t0 | ASt1 B $t0 B $t1 | M[$a0]
0 0

1 try: LI $t0, 1 try: LI $tO, 1 1 1 0

2 LL $t1, 0($a0) |LL $t1, 0($a0) |1 0 1 0 0

3 BNEZ $t1, try | BNEZ $t1,try |1 0 1 0 0

4 SC $t0, 0($a0) | SC $t0, 0 ($a0) | O 0 1 0 1

5 BEQZ $t0, try |BEQZ $t0,try |0 0 1 0 1

6 try: LI $tO, 1 Critical section

Summary

Need parallel abstraction like for multicore

Writing correct programs is hard
Need to prevent data races

Need critical sections to prevent data races

Mutex, mutual exclusion, implements critical
section

Mutex often implemented using a lock abstraction

Hardware provides synchronization primitives such as LL
and SC (load linked and store conditional) instructions to
efficiently implement locks

Topics

Synchronization
* Threads

e Critical sections, race conditions, and mutexes
* Atomic Instructions

e HW support for synchronization

* Using sync primitives to build concurrency-safe data
structures

 Example: thread-safe data structures
 Language level synchronization
 Threads and processes

Next Goal

How do we use synchronization primitives to
build concurrency-safe data structure?

Let’s look at a ring buffer

Attempt#1: Producer/Consumer

Access to[shared data] must be synchronized

e goal: enforce datastructure invariants

// invariant:

// data is in A[h .. t-1] head tail
char A[100]; v v
int h=20, t=0; 112134

// producer: add to list tail .
. // consumer: take from list head
void put(char c) {

) , char get() {
// Need: check if list full .
ATE] - o while (empty()) { };

char ¢ = A[h];
t = (t+1)%n;
) h = (h+1)%n;

return c;

¥

Testing the invariant
Various ways to implement empty()
1. h==
but then the put has to be careful
2. could be a separate boolean

Attempt#1: Producer/Consumer

// 1invariant:
// data is in A[h .. t-1]

char A[100]; hi?d tail
int h = 0, t = 0; 2134
// producer: add to list tail // consumer: take from list head
void put(char c) {...... char get() {
Alt] = c; while (empty()) { };
= (t+1)%n; char ¢ = Al[h];
} = (h+1)%n;
return c;

Error: could miss an update to t orth due to lack of synchronization
Current implementation will break invariant:

only produce if not full and only consume if not empty
Need to synchronize access to shared data

Attempt#2: Protecting an invariant

// invariant: (protected by mutex m)
// data is in A[h .. t-1]

pthread mutex_t *m = pthread mutex create();
char A[100];
int h =0, t = 0;
// consumer: take from list head
char get() {
pthread mutex_lock(m);
while(empty()) {}
char ¢ = A[h];
h = (h+1)%n;
pthread mutex_unlock(m);
return c;

Rule of thumb: all access and updates that can affect
invariant become critical sections

Attempt#2: Protecting an invariant

// invariant: (protected by mutex m)
// data is in A[h .. t-1]

pthread mutex_t *m = pthread mutex create();

char Al100]; BUG: Can’t wait while holding lock

int h = 0, t = 0;
// consumer: take from list head
char get() {

pthread mutex_lock(m);
[wh11e<empty<>> 0]
char ¢ = A[h];
h = (h+1)%n;

pthread_mutex_unlock(m);

return c;

}
Rule of thumb: all access and updates that can affect

invariant become critical sections

Guidelines for successful mutexing

Insufficient locking can cause races

e Skimping on mutexes? Just say no!
But poorly designed locking can cause deadlock

P1: lock(ml); lock(m2); Circular
lock(m2); ><lock(m1), Wait
* Know why you are using mutexes!
e Acquire locks in a consistent order to avoid cycles

* Use lock/unlock like braces (match them lexically)
— lock(&m); ...; unlock(&m)
— Watch out for return, goto, and function calls!
— Watch out for exception/error conditions!

Attempt#3: Beyond mutexes

Writers must check for full buffer
& Readers must check if for empty buffer

* ideal: don’t busy wait... go to sleep instead
Cannot check condition while

chaP. get() { _ Holding the lock,
while (empty()) { }; BUT, empty condition may no

lock (L); longer hold in critical section
char ¢ = A[h];
h = (h+1)%n; head| tail==head
unlock (L);
return c; vl

} empty

Dilemma: Have to check while holding lock

Attempt#3: Beyond mutexes

Writers must check for full buffer
& Readers must check if for empty buffer

* ideal: don’t busy wait... go to sleep instead

char get() {
lock (L);

while (empty()) { };
char ¢ = A[h];

h = (h+1)%n;

unlock (L);

return c;

¥

Dilemma: Have to check while holding lock,
but cannot wait while holding lock

Attempt#4: Beyond mutexes

Writers must check for full buffer
& Readers must check if for empty buffer

* ideal: don’t busy wait... go to sleep instead
char get() {

do {
lock (L);
if (lempty()) {
c = A[h];
h (h+1)%n;

}
unlock (L);

} while (empty);
return c;

¥

Language-Level Synchronization

Condition variables
Wait for condition to be true
Thread sleeps while waiting
Can wake up one thread or all threads

Monitors, ...

Summary

Hardware Primitives: test-and-set, LL/SC, barrier, ...
... used to build ...

Synchronization primitives: mutex, semaphore, ...
... used to build ...

Language Constructs: monitors, signals, ...

PRELIM 2 CONTENT TILL HERE

Abstraction of Processes

How do we cope with lots of activity?

Is| l[wwW | |lemacs
nfsd lpr
OS

Simplicity? Separation into processes
Reliability? Isolation
Speed? Program-level parallelism

Process and Program

Process Program
OS abstraction of a running “Blueprint” for a process
computation e Passive entity (bits on disk)
* The unit of execution e Code + static data
* The unit of scheduling
Header
* Execution state
Code
+ address space
From process perspective Initialized data
e avirtual CPU
_ BSS
* some virtual memory Symbol table
e avirtual keyboard, screen, .
Line numbers
Ext. refs

Process

mapped segments

DLL's

Stack

L

{}

Heap

BSS

Initialized data

Code

Process and Program

Program

Header

Code

Initialized data

BSS

Symbol table

Line numbers

Ext. refs

Role of the OS

Role of the OS

Context Switching
* Provides illusion that every process owns a CPU

Virtual Memory
* Provides illusion that process owns some memory

Device drivers & system calls
* Provides illusion that process owns a keyboard, ...
To do:
How to start a process?
How do processes communicate / coordinate?

How to create a process?

Q: How to create a process?
A: Double click
After boot, OS starts the first process

..which in turn creates other processes
e parent / child = the process tree

pstree example

$ pstree | view -
init-+-NetworkManager-+-dhclient

-apache2
-chrome-+-chrome
" -chrome

-chrome---chrome

-clementine

-clock-applet

-cron

-cupsd

-firefox---run-mozilla.sh---firefox-bin-+-plugin-cont

-gnome-screensaver

-grep

-in.tftpd

-ntpd

"-sshd---sshd---sshd---bash-+-gcc---gcc---ccl

| -pstree
| -vim

T -view

Processes Under UNIX

Init is a special case. For others...
Q: How does parent process create child process?

A: fork() system call

int fork() returns TWICE!

Example

main(int ac, char **av) {
int x = getpid(); // get current process ID from 0S
char *hi = av[1l]; // get greeting from command line
printf(“I’m process %d\n”, x);
int id = fork();
if (id == 0)
printf(“%s from %d\n”, hi, getpid());
else
printf(“%s from %d, child is %d\n”, hi, getpid(), id)
}
$ gcc -o strange strange.c
$./strange “Hey”
I°’m process 23511
Hey from 23512
Hey from 23511, child is 23512

Inter-process Communication

Parent can pass information to child
* In fact, all parent data is passed to child

e But isolated after (copy-on-write ensures
changes are invisible)

Q: How to continue communicating?

A: Invent OS “IPC channels” : send(msg), recv(),

Inter-process Communication

Parent can pass information to child
* In fact, all parent data is passed to child

e But isolated after (C-O-W ensures changes are
invisible)

Q: How to continue communicating?
A: Shared (Virtual) Memory!

Processes and Threads

Processes and Threads

Process

OS abstraction of a running
computation

* The unit of execution

* The unit of scheduling

* Execution state
+ address space

From process perspective
e avirtual CPU
* some virtual memory
e avirtual keyboard, screen,

Thread
OS abstraction of a single
thread of control

* The unit of scheduling

e Lives in one single process
From thread perspective

 one virtual CPU core on a
virtual multi-core machine

Multithreaded Processes

code

data

files

registers

stack

thread — ;

code data files
registers ||| registers ||| registers
stack stack stack

single-threaded process

3

3

3“—

— thread

multithreaded process

Threads

#include <pthread.h>
int counter = 0;

void PrintHello(int arg) {
printf(“I’°m thread %d, counter is %d\n”, arg, counter++);

. do some work ...

pthread exit(NULL);

int main () {
for (t = 0; t < 4; t++) {
printf(“in main: creating thread %d\n", t);
pthread create(NULL, NULL, PrintHello, t);

}
pthread exit(NULL);

Threads versus Fork

in main: creating thread ©
I°’m thread 0, counter is
in main: creating thread
I°’m thread 1, counter 1is
in main: creating thread
in main: creating thread
I°m thread 3, counter 1is

w N W N R RO

I°m thread 2, counter 1is

Summary

Processes and Threads are the abstraction that we
use to write parallel programs

Fork and Join and Interprocesses communication
(IPC) can be used to coordinate processes

Threads are used to coordinate use of shared
memory within a process

GPUs

The supercomputer in your laptop

GPU: Graphics processing unit

Very basic till about 1999
Specialized device to accelerate display

Then started changing into a full processor

2000-...: Frontier times

Parallelism

GPU-type computation offers higher GFlops

GFLOPs Trend

—
o
w
o
7

S—
v

o
L=
[V
O
-
©
]
a

AMD
projections
——

2006 2007 2008 2009 2010 2011 2012 2013 2014

Years

(Source: Sam Naffziger, AMD)

GPUs: Faster than Moore’ s Law

Moore’s Law is for Wimps?!

10°- One-pixel polygons (~10M polygons @ 30Hz)
108 .
S|Ope ~2_4xlyear UNC/HP PixelFlow **
(Moore's Law ~ 1.7x/year)
Peak 1 07_ S|(|§I GeForce
Performance Division
(®Is/sec) UNC Pxpl5 Cobalt
106
- eedom pC Graphics
at . Division VPX
10°- shadin Stellar GS1000
UNC Pxpld | Gouraud Antialiasing
SGl Iris shading
10° I I I I | | [
86 88 90 92 94 96 98 00
Year

Graph courtesy of Professor John Poulton (from Eric Haines)

nVidia

G70
_ 609

108

10/

106

_ 105

104

Programmable Hardware

e Started in 1999

 Flexible, programmable
— Vertex, Geometry, Fragment Shaders

 And much faster, of course

* 1999 GeForce256: 0.35 Gigapixel peak fill rate
« 2001 GeForcegd: 0.8 Gigapixel peak fill rate
« 2003 GeForceFX Ultra: 2.0 Gigapixel peak fill rate
« ATl Radeon 9800 Pro: 3.0 Gigapixel peak fill rate

« 2006 NVG60: ... Gigapixel peak fill rate
« 2009 GeForce GTX 285: 10 Gigapixel peak fill rate
« 2011

— GeForce GTC 590: 56 Gigapixel peak fill rate
— Radeon HD 6990: 2x26.5

« 2012
— GeForce GTC 690: 62 Gigapixel/s peak fill rate

Evolution of GPU

DirectX B DiractX 7 DirectX B DirectX 8 DirectX 6.0c Direct X 10 Direct X 11 Direct X 11.1
DirectX & Mu ltitesduring T&L TextureStageState SM1x SM 2.0 SM 3.0
Riva 128 Riva TNT GaForea 256 GeFores 3

g

GaForcaF X GaFores 6 OpenGL 4.0 OpenGL 4.2

RN [T T

1808 1980 2000 2001 2002 2004 2006 2009

= =
y Wl
ua'.l
\
-
v ,

Quake 3 Glants UE3 BattleForge

Around 2000

Fixed function pipeline

o

{ vertices } o D’ %
o

“ J

Around 2005

Programmable vertex and pixel processors

G70 (Based on NV40): 2005
GeForce 7800

Parallelism artlo M

Fragment Crossbar

SAAARARARAAAAS

Memun,' Nemory 7 Memory Memary
Pa rtrton Partrtlo Partition Partition

] i
DRAM(s) DRAM(s) DRAM(s) DRAM(s)

Post 2006: Unified Architecture

Why?
Parallelism: thousands of cores
Pipelining
Hardware multithreading

Not multiscale caching
« Streaming caches

Throughput, not latency

Flynn’s Taxonomy

Single Instruction
Single Data
(SISD)

Multiple Instruction
Single Data
(MISD)

Single Instruction
Multiple Data
(SIMD)

Multiple Instruction
Multiple Data
(MIMD)

MIMD array of SIMD procs

Grids, Blocks, and Threads

Grid

Block (0, 0) Block (1, 0)

R A

Thread (0,0) = Thread (1, 0) Thread (0,0) = Thread (1, 0)

t t t t

Host

+—

Shuang Zhao, Cornell University, 2014

Host

CUDA Memory

Grid

Block (0, 0)

Block (1, 0)

Faster, per-block

Thread (0,0) | Thread (1, 0) Thread (0,0) Thread (1, 0)
an 4 4 4+

F

rF

Fastest, per-thread

— Slower, global

— Read-only, cached

Shuang Zhao, Cornell University, 2014

Heterogeneous Computing

Host: the CPU and its memory Device: the GPU and its memory

Shuang Zhao, Cornell University, 2014

Programming using CUDA

Compute Unified
Device Architecture

do_something_on_host();
kernel<<<nBlk, nTid>>>(args); ~—— " >
cudaDeviceSynchronize();

vy \A

do_something else on_host();

Highly parallel

Shuang Zhao, Cornell University, 2014

Hardware Thread Organization

Threads in a block are partitioned into warps

* All threads in a warp execute in a Single Instruction Multiple
Data, or SIMD, fashion

» All paths of conditional branches will be taken
* Warp size varies, many graphics cards have 32

NO guaranteed execution ordering between warps

Shuang Zhao, Cornell University, 2014

Branch Divergence

Threads in one warp execute very different branches
Significantly harms the performance!

Simple solution:

* Reordering the threads so that all threads in each block are
more likely to take the same branch

* Not always possible

Shuang Zhao, Cornell University, 2014

Welcome to

the jungle
The free cloud-core
lunch is
SO over
i hetero-core
muiti- |_.‘
single-threaded free lunch core
| \ _

LR B

2005 2011 207?

1975
Exit Moore

