Synchronization 2

CS 3410, Spring 2014
Computer Science
Cornell University

See P&H Chapter: 2.11, 6.5

Administrivia
Next 3 weeks

 Week 12 (this week): Proj3 due E+-Sun
— Note Lab 4 is now IN CLASS
— Prelim 2 review Sunday and Monday

 Week 13 (Apr 29): Proj4 release, Lab4-dueTFue, Prelim2

 Week 14 (May 6): Proj3 tournament Mon, Proj4 design
doc due

Final Project for class
 Week 15 (May 13): Proj4 due Wed
* Remember: No slip days for PA4

Shared Memory Multiprocessors

Shared Memory Multiprocessor (SMP)
* Typical (today): 2 — 8 cores each

 HW provides single physical address space for all
pProcessors

e Assume uniform memory access (UMA) (ignore NUMA)

Core(Corel Core2 Core3
Cache Cache Cache Cache
{ { { {
Interconnect

{ !

Memory /0

Cache Coherency Problem

Thread A (on Core0) Thread B (on Corel)

for(inti=0,i<5;i++) { for(intj=0;j<5; j++) {
Al) LW StO, addr(x) B1) LW StO, addr(x)
A2) ADDIU StO0, $t0, 1 B2) ADDIU StO, St1, 1
A3) SW St0, addr(x) B3) SW St0, addr(x)

Cache Coherence Problem

Suppose two CPU cores share a physical address space

* Write-through caches

Time | Event CPU A’s CPU B’s Memory
step cache cache
0 0
1 CPU Areads X 0 0
2 |CPUBreads X 0 0 0
3 |cPUAwitesTtox | (1) © ©
CoreQ Corel CoreN
Cache Cache Cache
:t $:I: Intercoi:mect :I:
Memory /0

Coherence Defined

Informal: Reads return most recently written value

Formal: For concurrent processes P, and P,

* P writes X before P reads X (with no intervening writes)
=> read returns written value

* P, writes X before P, reads X
= read returns written value

* P, writes X and P, writes X
=> all processors see writes in the same order

— all see the same final value for X
— Aka write serialization

Coherence Defined
Formal: For concurrent processes P, and P,

* P writes X before P reads X (with no intervening writes)
=> read returns written value

— (preserve program order)

* P, writes X before P, reads X
= read returns written value
— (coherent memory view, can’t read old value forever)

* P, writes X and P, writes X
=> all processors see writes in the same order
— all see the same final value for X
— Aka write serialization

— (else X can see P2’s write before P1 and Y can see the
opposite; their final understanding of state is wrong)

Cache Coherence Protocols

Operations performed by caches in multiprocessors
to ensure coherence and support shared memory

* Migration of data to local caches
— Reduces bandwidth for shared memory (performance)

* Replication of read-shared data
— Reduces contention for access (performance)

Snooping protocols
e Each cache monitors bus reads/writes (correctness)

Snooping
Snooping for Hardware Cache Coherence
* All caches monitor bus and all other caches

Write invalidate protocol
* Bus read: respond if you have dirty data

e Bus write: update/invalidate your copy of data

{ { { { {

Interconnect

{ {

Memory /0

Invalidating Snooping Protocols

Cache gets exclusive access to a block when it is to be
written

* Broadcasts an invalidate message on the bus

e Subsequent read is another cache miss
— Owning cache supplies updated value

Time | CPU activity Bus activity CPUA’s | CPUB’s | Memory
Step cache cache

0 0

1 CPU Areads X Cache miss for X 0 0

2 CPU B reads X Cache miss for X 0 0 0

3 CPU Awrites 1to X | Invalidate for X 1 DO o

4 CPU B read X Cache miss for X ® ®

Invalidating Snooping Protocols

Cache gets exclusive access to a block when it is to be
written

* Broadcasts an invalidate message on the bus

e Subsequent read is another cache miss
— Owning cache supplies updated value

Time | CPU activity Bus activity CPUA’s | CPUB’s | Memory
Step cache cache

0 0

1 CPU Areads X Cache miss for X 0 0

2 CPU B reads X Cache miss for X 0 0 0

3 CPU Awrites 1to X | Invalidate for X 1 DO o

4 CPU B read X Cache miss for X ® ® @

Writing

Write-back policies for bandwidth

Write-invalidate coherence policy
* First invalidate all other copies of data
 Then write it in cache line
* Anybody else can read it

Works with one writer, multiple readers

In reality: many coherence protocols
* Snooping doesn’t scale
« MOESI, MOS|, ... (mod, own, exclusive, share, inv)

e Directory-based protocols

— Caches and memory record sharing status of blocks in a
directory

Summary of cache coherence

Cache coherence requires that reads return
most recently written value

Cache coherence is hard
Snooping protocols are one approach

Cache coherence protocols alone are not
enough

Need more for consistency

Synchronization

Threads

Critical sections, race conditions, and mutexes
Atomic Instructions

e HW support for synchronization

e Using sync primitives to build concurrency-safe data
structures

Example: thread-safe data structures
Language level synchronization
Threads and processes

Programming with Threads

Need it to exploit multiple processing units
...to parallelize for multicore
...to write servers that handle many clients

Problem: hard even for experienced programmers
* Behavior can depend on subtle timing differences
* Bugs may be impossible to reproduce

Needed: synchronization of threads

Programming with threads

Within a thread: execution is sequential
Between threads?

* No ordering or timing guarantees
* Might even run on different cores at the same time

Problem: hard to program, hard to reason about
e Behavior can depend on subtle timing differences
* Bugs may be impossible to reproduce

Cache coherency isn’t sufficient...

Need explicit synchronization to make sense of
concurrency!

Programming with Threads

Concurrency poses challenges for:

Correctness

* Threads accessing shared memory should not interfere with
each other

Liveness
* Threads should not get stuck, should make forward progress
Efficiency

* Program should make good use of available computing
resources (e.g., processors).

Fairness
* Resources apportioned fairly between threads

Example: Multi-Threaded Program

Apache web server

void main() {
setup();

while (c = accept_connection()) {

req = read_request(c);

hits[req]++;
send_response(c, req);

¥

cleanup();

Example: web server

Each client request handled by a separate thread
(in parallel)
 Some shared state: hit counter, ...

Thread 52 Thread 205
read hits read hits

addi addi

write hits write hits

(look familiar?)
Timing-dependent failure = race condition
* hard to reproduce = hard to debug

Two threads, one counter

Possible result: lost update!

hits =0
time ? Tl ? T2
LW (0)
LW (O)
ApDDIU/sW: hits = 0 + 1
ADDIU/SW:

hits = 1

Timing-dependent failure = race condition
* Very hard to reproduce = Difficult to debug

Race conditions

Def: timing-dependent error involving access to shared state

Whether a race condition happens depends on
* how threads scheduled

* i.e. who wins “races” to instruction that updates state vs.
instruction that accesses state

Challenges about Race conditions

e Races are intermittent, may occur rarely
* Timing dependent = small changes can hide bug

(A program is correct only if all possible schedules are safe
* Number of possible schedule permutations is huge

* Need to imagine an adversary who switches contexts at the
worst possible time

- /

Critical sections

What if we can designate parts of the execution
as critical sections
* Rule: only one thread can be “inside” a critical

section
Thread 52 Thread 205
read hits read hits
addi addi

write hits write hits

Critical Sections

To eliminate races: use critical sections that only
one thread can be in

* Contending threads must wait to enter

tTime ? T ?TZ

CSEnter(); CSEnter();
Critical section Z#Z wait
CSExit(); # wait
Critical section
oM CSExit():

?TZ

Mutexes

Q: How to implement critical sections in code?
A: Lots of approaches....

Mutual Exclusion Lock (mutex)

lock(m): wait till it becomes free, then lock it
unlock(m): unlock it

safe_increment() {

nthread _mutex_lock(&m);
nits = hits + 1;
nthread _mutex unlock(&m);

Mutexes

Only one thread can hold a given mutex at a time
Acquire (lock) mutex on entry to critical section
* Or block if another thread already holds it
Release (unlock) mutex on exit
* Allow one waiting thread (if any) to acquire & proceed

pthread mutex init(&m);
‘pthread . mutex _lock (&m) ;

pthread mutex lock (&m) ; # wait
hits = hits+l; # wait
pthread mutex unlock (&m) ; hits = hits+l;
? T1 pthread mutex unlock (&m),

?TZ

Next Goal

How to implement mutex locks?
What are the hardware primitives?

Then, use these mutex locks to implement critical
sections, and use critical sections to write parallel

safe programs

Synchronization

Synchronization requires hardware support
* Atomic read/write memory operation

e No other access to the location allowed between
the read and write

* Could be a single instruction

—E.g., atomic swap of register
ATS, BTS; x86)

* Or an atomic pair of instructions (e.g. LL and SC;
MIPS)

Synchronization in MIPS

Load linked: LL rt, offset(rs)

Store conditional: SC rt, offset(rs)

* Succeeds if location not changed since the LL
— Returns 1inrt

 Fails if location is changed
— Returns O inrt

Any time a processor intervenes and modifies the value
in memory between the LL and SC instruction, the SC
returns 0 in StO

Use this value O to try again

Mutex from LL and SC

Linked load / Store Conditional
m = 0; // 0 means lock is free; otherwise, if m ==1, then lock locked
mutex_lock(int m) {

while(test and set(&m)){}

int test and set(int *m) {

old = *m;| LL Atomic

return old;

Mutex from LL and SC

Linked load / Store Conditional
m = 0;
mutex_ lock(int *m) {
while(test and set(m)){}
}
int test and set(int *m) {
try:
LI $to, 1
LL $t1, 0(%a0)
SC $to, 0(%a0)
BEQZ $t0, try
MOVE $vO, $t1

Synchronization in MIPS

Load linked:

Example: atomic incrementor

LL rt, offset(rs)
Store conditional: SC rt, offset(rs)

Succeeds if location not changed since the LL: Returns 1inrt

Fails if location is changed: Returns O in rt

Time | Thread A Thread B Thread | Thread B | Memory
Step A $t0 $t0 M[$s0]
0 0

1 try: LL $tO, 0($s0) try: LL $t0, 0($s0)

2 ADDIU $t0, $t0, 1 ADDIU $t0, $t0, 1

3 SC $t0, 0($s0) SC $t0, 0 ($s0)

4 BEQZ $t0, try BEQZ $t0, try

Synchronization in MIPS

Load linked:

Example: atomic incrementor

LL rt, offset(rs)
Store conditional: SC rt, offset(rs)

Succeeds if location not changed since the LL:
Fails if location is changed: Returns O in rt

Returns 1inrt

Time | Thread A Thread B Thread | Thread B | Memory
Step A $t0 $t0 M[$s0]
0 0
1 try: LL $t0, 0($s0) try: LL $t0, 0($s0) 0 0 0
2 ADDIU $t0, $t0, 1 ADDIU $t0, $t0, 1 1 1 0
3 SC $t0, 0($s0) SC $t0, 0 ($s0) 0 1 1
4 BEQZ $t0, try BEQZ $t0, try 0 1 1

Mutex from LL and SC

m = 0;
mutex_ lock(int *m) {
test and set:
LI $to, 1
LL $t1, 0(%$a0)
BNEZ $tl1, test and_set
SC $t0, 0(%$a0)
BEQZ $t0, test and set
}
mutex_unlock(int *m) {
*m = 0;

¥

Mutex from LL and SC

m=0; This is called a
mutex_ lock(int *m) { Spin lock
test_and_set: / Aka spin waiting
LI $to, 1
LL $t1, 0($a0)
BNEZ $tl1, test and_set
SC $t0, 0(%$a0)
BEQZ $t0, test and set
}

mutex_unlock(int *m) {
SW $zero, 0(%$a0)

¥

m = 0;

mutex_ lock(int *m) {

Mutex from LL and SC

Time | Thread A Thread B Thread | Thread | Thread | Thread | Mem
0
try: LI $tO, 1 try: LI $t0, 1

LL $t1, 0($a0)

LL $t1, 0($a0)

BNEZ $t1, try

BNEZ $t1, try

SC $t0, 0($a0)

SC $t0, 0 ($a0)

BEQZ $t0, try

BEQZ $t0, try

OO |~([WIND|—=]0

m = 0;

Mutex from LL and SC

mutex_ lock(int *m) {

Time | Thread A Thread B Thread | Thread | Thread | Thread | Mem
Step ASt0 | A St B $t0 B $t1 | M[$a0]
0 0

1 try: LI $tO, 1 try: LI $t0, 1 1 1 0

2 LL $t1, 0($a0) |LL $t1, 0($a0) |1 0 1 0 0

3 BNEZ $t1, try | BNEZ $t1,try |1 0 1 0 0

4 SC $t0, 0($a0) | SC $t0, 0 ($a0) | O 0 1 0 1

5 BEQZ $t0, try | BEQZ $t0,try |O 0 1 0 1

6

m = 0;

mutex_ lock(int *m) {

Mutex from LL and SC

Time | Thread A Thread B Thread | Thread | Thread | Thread | Mem
Step AS$t0O | A St B $t0 B $t1 | M[$a0]
0 0

1 try: LI $tO, 1 try: LI $t0, 1 1 1 0

2 LL $t1, 0($a0) |LL $t1, O($a0) |1 0 1 0 0

3 BNEZ $t1, try | BNEZ $t1,try |1 0 1 0 0

4 SC $t0, 0($a0) | SC $t0, 0 ($a0) | O 0 1 0 1

5 BEQZ $t0, try | BEQZ $t0,try |O 0 1 0 1

6 try: LI $tO, 1 Critical section

Alternative Atomic Instructions

Other atomic hardware primitives

- test and set (x86)

- atomic increment (x86)

- bus lock prefix (x86)

- compare and exchange (x86, ARM deprecated)

- linked load / store conditional
(MIPS, ARM, PowerPC, DEC Alpha, ...)

Summary

Need parallel abstraction like for multicore

Writing correct programs is hard
Need to prevent data races

Need critical sections to prevent data races
Mutex, mutual exclusion, implements critical section
Mutex often implemented using a lock abstraction

Hardware provides synchronization primitives such as LL
and SC (load linked and store conditional) instructions to

efficiently implement locks

Topics

Synchronization

* Threads

e C(Critical sections, race conditions, and mutexes
* Atomic Instructions

e HW support for synchronization

* Using sync primitives to build concurrency-safe data
structures

 Example: thread-safe data structures
 Language level synchronization
 Threads and processes

Next Goal

How do we use synchronization primitives to
build concurrency-safe data structure?

Attempt#1: Producer/Consumer

Access to[shared data] must be synchronized

» goal: enforce data structure invariants

// 1invariant:
// data is in A[h .. t-1]

char A[100]; hj?d TTI
inth=@,t=0; 11213

// producer: add to list tail
void put(char c) {

A[t] = c;

t = (t+1)%n;
}

Attempt#1: Producer/Consumer

Access to[shared data] must be synchronized

» goal: enforce datastructure invariants

// invariant:

// data is in A[h .. t-1] hqad tail
char A[100]; v v
int h=0, t = 0; 1121314

// producer: add to list tail
void put(char c) {
// Need: check if list full
A[t] = c;
t = (t+1)%n;
}

Attempt#1: Producer/Consumer

Access to[shared data] must be synchronized

» goal: enforce datastructure invariants

// invariant:

// data is in A[h .. t-1] hqad tail
char A[100]; v v
int h=0, t = 0; 1121314

// producer: add to list tail
void put(char c) {
// Need: check if list full
A[t] = c;
t = (t+1)%n;

// consumer: take from list head
char get() {
while (h == t) { };
char ¢ = A[h];
} h = (h+1)%n;
return c;

Attempt#1: Producer/Consumer

// invariant:
// data is in A[h .. t-1]

char A[100]; hi?d *%ﬂ_
int h = @, t = 0; > 13 |4
// producer: add to list tail // consumer: take from list head
void put(char c) {...... char get() {

Alt] = c; while (h == t) { };

t = (t+1)%n; char ¢ = A[h];
} h = (h+1)%n;

return c;

Error: could miss an update to t orth due to lack of synchronization
Current implementation will break invariant:

only produce if not full and only consume if not empty
Need to synchronize access to shared data

Attempt#2: Protecting an invariant

// invariant: (protected by mutex m)
// data is in A[h .. t-1]

pthread mutex_t *m = pthread mutex create();
char A[100];
int h = 9, t = 0;
// consumer: take from list head
char get() {
pthread_mutex_lock(m);
while(h == t) {}
char ¢ = A[h];
h = (h+1)%n;
pthread mutex_unlock(m);
return c;

Rule of thumb: all access and updates that can affect
invariant become critical sections

Attempt#2: Protecting an invariant

// invariant: (protected by mutex m)
// data is in A[h .. t-1]

pthread mutex_t *m = pthread mutex create();
char A[100];

int h =9, t = 0;

BUG: Can’t wait while holding lock

// consumer: take 2?6; list head
char get() {
pthread_mutex_lock(m);
Lwhile(h == t) {}]
char ¢ = A[h];
h = (h+1)%n;
pthread mutex_unlock(m);
return c;

}
Rule of thumb: all access and updates that can affect

invariant become critical sections

Guidelines for successful mutexing

Insufficient locking can cause races
e Skimping on mutexes? Just say no!

But poorly designed locking can cause deadlock

P1: lock(ml); lock(m2); Circular
lock(m2); ><lock(m1), Wait
* Know why you are using mutexes!

* Acquire locks in a consistent order to avoid cycles

* Use lock/unlock like braces (match them lexically)
— lock(&m); ...; unlock(&m)
— Watch out for return, goto, and function calls!
— Watch out for exception/error conditions!

Attempt#3: Beyond mutexes

Writers must check for full buffer
& Readers must check if for empty buffer

* ideal: don’t busy wait... go to sleep instead

Cannot check condition while
char get() { Holding the lock,
while (h == t) { }; BUT, empty condition may no
lock (L); longer hold in critical section
char ¢ = A[h];
h = (h+l1)%n; head| tail=shead
unlock (L);
return c; Vl
} empty

Dilemma: Have to check while holding lock

Attempt#3: Beyond mutexes

Writers must check for full buffer
& Readers must check if for empty buffer

* ideal: don’t busy wait... go to sleep instead

char get() {
lock (L);
while (h == t) { };
char ¢ = A[h];
h = (h+1)%n;
unlock (L);
return c;

}

Dilemma: Have to check while holding lock,
but cannot wait while holding lock

Attempt#4: Beyond mutexes

Writers must check for full buffer
& Readers must check if for empty buffer

* ideal: don’t busy wait... go to sleep instead
char get() {

do {
lock (L);
empty = (h == t);
if (lempty) {
c = A[h];
h = (h+1)%n;
}
unlock (L);
} while (empty);
return c;

¥

Language-Level Synchronization

Condition variables
Wait for condition to be true
Thread sleeps while waiting
Can wake up one thread or all threads

Monitors

Summary

Hardware Primitives: test-and-set, LL/SC, barrier, ...
... used to build ...

Synchronization primitives: mutex, semaphore, ...
... used to build ...

Language Constructs: monitors, signals, ...

