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Compiler scheduling for dual-issue MIPS…
lw   $t0, 0($s1)     # load A
addi $t0, $t0, +1 # increment A
sw   $t0, 0($s1) # store A
lw   $t1, 0($s2)     # load B
addi $t1, $t1, +1 # increment B
sw   $t1, 0($s2) # store B

ALU/branch slot Load/store slot cycle
nop lw   $t0,  0($s1) 1
nop nop 2
addi $t0, $t0, +1 nop 3
nop sw   $t0,  0($s1) 4
nop lw   $t1,  0($s2) 5
nop nop 6
addi $t1, $t1, +1 nop 7
nop sw   $t1,  0($s2) 8



Q: Does multiple issue / ILP work?

A: Kind of… but not as much as we’d like

Limiting factors?

• Programs dependencies

• Hard to detect dependencies  be conservative

– e.g. Pointer Aliasing: A[0] += 1; B[0] *= 2;

• Hard to expose parallelism

– Can only issue a few instructions ahead of PC

• Structural limits

– Memory delays and limited bandwidth

• Hard to keep pipelines full



Next few weeks

• Week 12 (Apr 22):  Lab4 release and Proj3 due Fri

– Note Lab 4 is now IN CLASS

• Week 13 (Apr 29):  Proj4 release, Lab4 due Tue, Prelim2

• Week 14 (May 6): Proj3 tournament Mon, Proj4 design 
doc due

Final Project for class

• Week 15 (May 13): Proj4 due Wed



Many ways to improve performance

Multicore

Performance in multicore

Synchronization

Next 2 lectures: synchronization and GPUs



We have looked at 

• Pipelining

• To speed up:

• Deeper pipelining

• Make the clock run faster

• Parallelism

• Not a luxury, a necessity



Moore’s law

• A law about transistors

• Smaller means more transistors per die

• And smaller means faster too

But: need to worry about power too…



Power = capacitance * voltage2 * frequency

approx. capacitance * voltage3

Reducing voltage helps (a lot)

Better cooling helps

The power wall

• We can’t reduce voltage further - leakage

• We can’t remove more heat



Hot Plate

Rocket Nozzle

Nuclear Reactor

Surface of Sun

Xeon

180nm 32nm



Power
1.0x

1.0x

Performance
Single-Core

Power
1.2x

1.7x

Performance Single-Core
Overclocked +20%

Power
0.8x

0.51x

Performance Single-Core
Underclocked -20%

1.6x

1.02x

Dual-Core
Underclocked -20%
Undervolted -20%



AMD Barcelona Quad-Core: 4 processor cores



Intel Nehalem Hex-Core



Hardware multithreading

• Increase utilization with low overhead

Switch between hardware threads for stalls



Process includes multiple threads, code, data 
and OS state



Fine grained vs. Coarse grained hardware 
multithreading

Simultaneous multithreading (SMT)

Hyperthreads (Intel simultaneous 
multithreading)

• Need to hide latency



Fine grained vs. Coarse grained hardware 
multithreading

Fine grained multithreading
Switch on each cycle
Pros: Can hide very short stalls
Cons: Slows down every thread

Coarse grained multithreading
Switch only on quite long stalls
Pros: removes need for very fast switches
Cons: flush pipeline, short stalls not handled



SMT
• Leverages multi-issue pipeline with dynamic 

instruction scheduling and ILP
• Exploits functional unit parallelism better than single 

threads
• Always running multiple instructions from multiple 

threads
• No cost of context switching
• Uses dynamic scheduling and register renaming 

through reservation stations 

• Can use all functional units very efficiently





Multi-Core vs. Multi-Issue

Programs:
Num. Pipelines:
Pipeline Width:

Hyperthreads
• HT = MultiIssue + extra PCs and registers – dependency logic
• HT = MultiCore – redundant functional units + hazard avoidance

Hyperthreads (Intel)
• Illusion of multiple cores on a single core
• Easy to keep HT pipelines full + share functional units

vs. HT

N 1 N

N 1 1

1 N N



8 multiprocessors 
4 core per multiprocessor
2 HT per core

Dynamic multi-issue: 4 issue
Pipeline depth: 16

Note: each processor may
have multiple processing 
cores, so this is an example 
of a multiprocessor multicore
hyperthreaded system



Q: So lets just all use multicore from now on!

A: Software must be written as parallel program

Multicore difficulties

• Partitioning work, balancing load

• Coordination & synchronization

• Communication overhead

• How do you write parallel programs?

– ... without knowing exact underlying architecture?



Partition work so all cores have something to do



Need to partition so all cores are actually working



If tasks have a serial part and a parallel part…

Example: 

step 1: divide input data into n pieces

step 2: do work on each piece

step 3: combine all results

Recall: Amdahl’s Law

As number of cores increases …

• time to execute parallel part? 

• time to execute serial part?

• Serial part eventually dominates 

goes to zero

Remains the same





affected execution time

amount of improvement

+  execution time unaffected

Execution time after improvement =

Timproved = 
T
affected

improvement factor
+ Tunaffected



Example: multiply accounts for 80s out of 100s

• How much improvement do we need in the multiply 

performance to get 5× overall improvement?

20 =  80/n + 20

Improving an aspect of a computer and expecting a 
proportional improvement in overall performance

– Can’t be done!

Timproved = 
T
affected

improvement factor
+ Tunaffected



Workload: sum of 10 scalars, and 10 × 10 matrix sum
• Speed up from 10 to 100 processors?

Single processor: Time = (10 + 100) × tadd

10 processors
• Time = 100/10 × tadd + 10 × tadd = 20 × tadd

• Speedup = 110/20 = 5.5

100 processors
• Time = 100/100 × tadd + 10 × tadd = 11 × tadd
• Speedup = 110/11 = 10 

Assumes load can be balanced across processors



What if matrix size is 100 × 100?

Single processor: Time = (10 + 10000) × tadd

10 processors

• Time = 10 × tadd + 10000/10 × tadd = 1010 × tadd

• Speedup = 10010/1010 = 9.9

100 processors

• Time = 10 × tadd + 10000/100 × tadd = 110 × tadd

• Speedup = 10010/110 = 91

Assuming load balanced



Strong scaling vs. weak scaling

Strong scaling: scales with same problem size

Weak scaling: scales with increased problem size



Necessity, not luxury

Power wall

Not easy to get performance out of

Many solutions

Pipelining

Multi-issue

Hyperthreading

Multicore



Q: So lets just all use multicore from now on!

A: Software must be written as parallel program

Multicore difficulties

• Partitioning work

• Coordination & synchronization

• Communications overhead

• Balancing load over cores

• How do you write parallel programs?

– ... without knowing exact underlying architecture?

HW

SW
Your 
career…



P&H Chapter 2.11 and 5.10



How do I take advantage of parallelism?

How do I write (correct) parallel programs?

What primitives do I need to implement correct 
parallel programs?



Understand Cache Coherency

Synchronizing parallel programs

• Atomic Instructions

• HW support for synchronization

How to write parallel programs

• Threads and processes

• Critical sections, race conditions, and mutexes



Cache Coherency Problem: What happens when 
two or more processors cache shared data? 



Cache Coherency Problem: What happens when 
two or more processors cache shared data? 

i.e. the view of memory held by two different 
processors is through their individual caches

As a result, processors can see different 
(incoherent) values to the same memory location



Each processor core has its own L1 cache



Each processor core has its own L1 cache

Core0

Cache

Memory I/O

Interconnect

Core1

Cache

Core3

Cache

Core2

Cache



Core0 Core1 Core3Core2

Shared Memory Multiprocessor (SMP)

• Typical (today): 2 – 8 cores each 

• HW provides single physical address space for all 
processors

• Assume uniform memory access (UMA) (ignore NUMA)

Cache

Memory I/O

Interconnect

Cache CacheCache



Core0 Core1 CoreN

Shared Memory Multiprocessor (SMP)

• Typical (today): 2 – 8 cores each 

• HW provides single physical address space for all 
processors

• Assume uniform memory access (ignore NUMA)

...
Cache

Memory I/O

Interconnect

Cache Cache
... ...



...Core0

Cache

Memory I/O

Interconnect

Core1

Cache

CoreN

Cache
... ...

Thread A (on Core0) Thread B (on Core1)
for(int i = 0, i < 5; i++) { for(int j = 0; j < 5; j++) {

x = x + 1; x = x + 1;
} }

What will the value of x be after both loops finish?

Start: x = 0



Thread A (on Core0) Thread B (on Core1)
for(int i = 0, i < 5; i++) { for(int j = 0; j < 5; j++) {

x = x + 1; x = x + 1;
} }



Thread A (on Core0) Thread B (on Core1)
for(int i = 0, i < 5; i++) { for(int j = 0; j < 5; j++) {

LW $t0, addr(x) LW $t1, addr(x)

ADDIU $t0, $t0, 1 ADDIU $t1, $t1, 1

SW $t0, addr(x) SW $t1, addr(x)
} }



Thread A (on Core0) Thread B (on Core1)
for(int i = 0; i < 5; i++) { for(int j = 0; j < 5; j++) {

x = x + 1; x = x + 1;
} }

What can the value of x be after both loops finish?

a) 6

b) 8

c) 10

d) All of the above

e) None of the above



Time 

step

Event CPU A’s 

cache

CPU B’s 

cache

Memory

0 0

Suppose two CPU cores share a physical address space
• Write-through caches

Time 

step

Event CPU A’s 

cache

CPU B’s 

cache

Memory

0 0

1 CPU A reads X 0 0

Time 

step

Event CPU A’s 

cache

CPU B’s 

cache

Memory

0 0

1 CPU A reads X 0 0

2 CPU B reads X 0 0 0

Time 

step

Event CPU A’s 

cache

CPU B’s 

cache

Memory

0 0

1 CPU A reads X 0 0

2 CPU B reads X 0 0 0

3 CPU A writes 1 to X 1 0 1

...Core0

Cache

Memory I/O

Interconnect

Core1

Cache

CoreN

Cache
... ...



Coherence

What values can be returned by a read

Consistency

When a written value will be returned by a read



Informal: Reads return most recently written value

Formal: For concurrent processes P1 and P2

• P writes X before P reads X (with no intervening writes)
 read returns written value

• P1 writes X before P2 reads X 
 read returns written value

• P1 writes X and P2 writes X
 all processors see writes in the same order

– all see the same final value for X

– Aka write serialization



Formal: For concurrent processes P1 and P2

• P writes X before P reads X (with no intervening writes)
 read returns written value 

– (preserve program order)

• P1 writes X before P2 reads X 
 read returns written value 

– (coherent memory view, can’t read old value forever)

• P1 writes X and P2 writes X
 all processors see writes in the same order

– all see the same final value for X

– Aka write serialization

– (else X can see P2’s write before P1 and Y can see the 
opposite; their final understanding of state is wrong)



Operations performed by caches in multiprocessors 
to ensure coherence and support shared memory

• Migration of data to local caches
– Reduces bandwidth for shared memory (performance)

• Replication of read-shared data
– Reduces contention for access (performance)

Snooping protocols
• Each cache monitors bus reads/writes (correctness)



Snooping for Hardware Cache Coherence

• All caches monitor bus and all other caches

Write invalidate protocol

• Bus read: respond if you have dirty data

• Bus write: update/invalidate your copy of data

...Core0

Cache

Memory I/O

Interconnect

... ...
Snoop

Core1

CacheSnoop

CoreN

CacheSnoop



Cache gets exclusive access to a block when it is to be 
written

• Broadcasts an invalidate message on the bus

• Subsequent read is another cache miss
– Owning cache supplies updated value

Time

Step

CPU activity Bus activity CPU A’s 

cache

CPU B’s 

cache

Memory

0 0

Time

Step

CPU activity Bus activity CPU A’s 

cache

CPU B’s 

cache

Memory

0 0

1 CPU A reads X Cache miss for X 0 0

Time

Step

CPU activity Bus activity CPU A’s 

cache

CPU B’s 

cache

Memory

0 0

1 CPU A reads X Cache miss for X 0 0

2 CPU B reads X Cache miss for X 0 0 0

Time

Step

CPU activity Bus activity CPU A’s 

cache

CPU B’s 

cache

Memory

0 0

1 CPU A reads X Cache miss for X 0 0

2 CPU B reads X Cache miss for X 0 0 0

3 CPU A writes 1 to X Invalidate for X 1 0

Time

Step

CPU activity Bus activity CPU A’s 

cache

CPU B’s 

cache

Memory

0 0

1 CPU A reads X Cache miss for X 0 0

2 CPU B reads X Cache miss for X 0 0 0

3 CPU A writes 1 to X Invalidate for X 1 0

4 CPU B read X Cache miss for X 1 1



Cache gets exclusive access to a block when it is to be 
written

• Broadcasts an invalidate message on the bus

• Subsequent read is another cache miss
– Owning cache supplies updated value

Time

Step

CPU activity Bus activity CPU A’s 

cache

CPU B’s 

cache

Memory

0 0

Time

Step

CPU activity Bus activity CPU A’s 

cache

CPU B’s 

cache

Memory

0 0

1 CPU A reads X Cache miss for X 0 0

Time

Step

CPU activity Bus activity CPU A’s 

cache

CPU B’s 

cache

Memory

0 0

1 CPU A reads X Cache miss for X 0 0

2 CPU B reads X Cache miss for X 0 0 0

Time

Step

CPU activity Bus activity CPU A’s 

cache

CPU B’s 

cache

Memory

0 0

1 CPU A reads X Cache miss for X 0 0

2 CPU B reads X Cache miss for X 0 0 0

3 CPU A writes 1 to X Invalidate for X 1 0

Time

Step

CPU activity Bus activity CPU A’s 

cache

CPU B’s 

cache

Memory

0 0

1 CPU A reads X Cache miss for X 0 0

2 CPU B reads X Cache miss for X 0 0 0

3 CPU A writes 1 to X Invalidate for X 1 0

4 CPU B read X Cache miss for X 1 1 1



Write-back policies for bandwidth

Write-invalidate coherence policy
• First invalidate all other copies of data

• Then write it in cache line

• Anybody else can read it

Works with one writer, multiple readers

In reality: many coherence protocols
• Snooping doesn’t scale

• Directory-based protocols
– Caches and memory record sharing status of blocks in a directory



Informally, Cache Coherency requires that 
reads return most recently written value

Cache coherence hard problem

Snooping protocols are one approach





Is cache coherency sufficient?

i.e. Is cache coherency (what values are read) 
sufficient to maintain consistency (when a written 
value will be returned to a read)

Need both coherency and consistency



Two processors sharing an area of memory

• P1 writes, then P2 reads

• Data race if P1 and P2 don’t synchronize
– Result depends of order of accesses

Hardware support required

• Atomic read/write memory operation

• No other access to the location allowed between the read 
and write

Could be a single instruction

• E.g., atomic swap of register ↔ memory (e.g. ATS, BTS; 
x86)

• Or an atomic pair of instructions (e.g. LL and SC; MIPS)



Load linked: LL rt, offset(rs)

Store conditional: SC rt, offset(rs)
• Succeeds if location not changed since the LL

– Returns 1 in rt

• Fails if location is changed
– Returns 0 in rt

Example: atomic swap (to test/set lock variable)
try: MOVE $t0,$s4 ;copy exchange value

LL  $t1,0($s1);load linked

SC  $t0,0($s1);store conditional

BEQZ $t0,try ;branch store fails

MOVE $s4,$t1 ;put load value in $s4

Any time a processor intervenes and modifies the value in memory between 
the LL and SC instruction, SC returns 0 in $t0, causing the code to try again




