Multicore and Parallelism

CS 3410, Spring 2014
Computer Science
Cornell University

See P&H Chapter: 4.10, 1.7, 1.8, 5.10, 6

How to improve performance?

We have looked at
* Pipelining

 To speed up:
* Deeper pipelining
* Make the clock run faster
* Parallelism

Not a luxury, a necessity

Instruction-Level Parallelism (ILP)

Pipelining: execute multiple instructions in parallel

Q: How to get more instruction level parallelism?

A: Deeper pipeline
— E.g. 250MHz 1-stage; 500Mhz 2-stage; 1GHz 4-stage; 4GHz
16-stage

Pipeline depth limited by...
— max clock speed
— min unit of work (less work per stage = shorter clock
cycle)
— dependencies, hazards / forwarding logic

Instruction-Level Parallelism (ILP)

Pipelining: execute multiple instructions in parallel
Q: How to get more instruction level parallelism?
A: Multiple issue pipeline

— Start multiple instructions per clock cycle in duplicate
stages

ALU/Br —>

LW/SW ——>

Multiple issue pipeline

Static multiple issue
aka Very Long Instruction Word
Decisions made by compiler

Dynamic multiple issue
Decisions made on the fly

Cost: More execute hardware
Reading/writing register files: more ports

Static Multiple Issue

a.k.a. Very Long Instruction Word (VLIW)

Compiler groups instructions to be issued together
* Packages them into “issue slots”

Q: How does HW detect and resolve hazards?
A: It doesn’t

- Simple HW, assumes compiler avoids hazards

Example: Static Dual-Issue 32-bit MIPS

* |nstructions come in pairs (64-bit aligned)
— One ALU/branch instruction (or nop)
— One load/store instruction (or nop)

MIPS with Static Dual Issue

Two-issue packets
* One ALU/branch instruction
* One load/store instruction
64-bit aligned
—ALU/branch, then load/store

—Pad an unused instruction with nop

Delay slot: 2 instructions (1 cycle)

Address | Instruction type Pipeline Stages
n ALU/branch MEM WB

n+4 Load/store MEM WB
n+8 ALU/branch EX
n+12 Load/store
n+16 ALU/branch
n+ 20 Load/store

Scheduling Example
Schedule this for dual-issue MIPS

Loop: 1w $t0, 0($sl) # $tO0=array element
addu $t0, $t0, $s2 # add scalar in $s2
sw $t0, 0($s1) # store result
addi $s1, $sl1,-4 # decrement pointer
bne $s1, $zero, Loop # branch $s1!=0

ALU/branch Load/store cycle
1

2
3
4

Speculation

Reorder instructions
To fill the issue slot with useful work

Complicated: exceptions may occur

Optimizations to make it work

Move instructions to fill in nops
Need to track hazards and dependencies

Loop unrolling

Scheduling Example

Schedule this for dual-issue MIPS

$tO=array element
: # add scalar in $s2
0($s1) # store result
$s1,-4 # decrement pointer
$zero, Loop # branch $s1!=0

Scheduling Example

Compiler scheduling for dual-issue MIPS...

_—
Loop: 1w $tO, 0(%$s1) # $t0 = A[i]
Iw $t1, 4($s1) # $t1 = A[i+1]
addu $to, $to, $s2 add $s2
addu $t1, $t1, $s2 add $s2 éiS;
sw $to, 0(%$sl) store A[1i]
sw $tl, 4(%$s1) store A[i+1]
addi $s1, $s1, +8 increment pointer

bne $s1, $s3, Loop continue if $sll=en

ALU/branch slot Load/store slot cycle

\

Scheduling Example

Compiler scheduling for dual-issue MIPS...

Loop:

lw $to,
1w $t1,
addu $to,
addu $t1,
sw $to,
sw $t1,

0($s1)
4($s1)
$t0, $s2
$t1, $s2
0($s1)
4($s1)

addi $s1,

$s1, +8

bne $51,

ALU/branch

$53, LO

slot

$t0 = A[i]

$t1 = A[i+1]
add $s2
add $s2
store A[1i]
store A[i+1]

——

increment pointer
continue if $sll=en

Load/store slot

cycle

\

8c

Limits of Static Scheduling

v $t0, 0($s1)

addi $te, $te, +1

sw $to, 0($s1)
lw $to, 0(%$s2)

addi $te, $te, +1

sw $to, 0($s2)

ALU/branch slot
nop

nop

addi $to, $to, +1
nop

nop

nop

addi $to, $to, +1
nop

load A

increment A

store A
load B
increment B
store B

Load/store slot
lw $to, 0(%$s1)
nop

nop

sw $to,
lw $to,
nop

nop

sw $to,

0($s1)
0($s2)

0($s2)

Compiler scheduling for dual-issue MIPS...

cycle
1

Limits of Static Scheduling

Compiler scheduling for dual-issue MIPS...

lw $to, 0($s1) # load A

addi $to, $to, +1 increment A
sw $to, 0($s1) store A

lw $tl, 0($s2) load B

addi $t1, $t1, +1 increment B
sw $tl, 0($s2) store B

ALU/branch slot Load/store slot cycle
nop lw $to, 0(%$sl1) 1
nop op

addi $to, $to, +1 nop

nop SW t0, 0(%$s1)
<:7nop lw $tl, 0(%$s2)

nop op

addi $t1, $t1, +1 no
nop |sw $t1, 0(%$s2)

Limits of Static Scheduling

Compiler scheduling for dual-issue MIPS...

1w $te, o(3s1) # load A

addi $to, $to, +1 increment A
sw $to, 0($s1) store A

w $t1, 0($s2) load B

addi $t1, $t1, +1 increment B
sw $tl, 0($s2) store B

ALU/branch slot Load/store slot cycle
nop lw $to, 0(%$s1) 1
nop lw $tl1, 0(%$s2)

addi $to, $to, +1 nop

addi $t1, $t1, +1 sw $to, 0(%$s1)

nop sw $tl, 0(%$s2)

Problem: What if Ss1 and Ss2 are equal (aliasing)? Won’t work

Dynamic Multiple Issue

a.k.a. SuperScalar Processor
CPU examines instruction stream and chooses
multiple instructions to issue each cycle

* Compiler can help by reordering instructions....

* ... but CPU is responsible for resolving hazards

Dynamic Multiple Issue

a.k.a. SuperScalar Processor

Speculation/Out-of-order Execution
e Execute instructions as early as possible
Aggressive register renaming
Guess results of branches, loads, etc.
Roll back if guesses were wrong

Don’t commit results until all previous insts. are
retired

Dynamic Multiple Issue

Instruction fetch
and decode unit

Y

Y

Reservation
station

Reservation
station

Integer

Y

\

In-order issue

Reservation
station

Reservation
station

Floating
point

Load-
store

Y

Commit
unit

Out-of-order execute

In-order commit

Why dynamic scheduling?

To handle unpredictable stalls
Like cache misses

Hides details of pipeline from applications

Abstraction

Does Multiple Issue Work?

Q: Does multiple issue / ILP work?
A: Kind of... but not as much as we’d like
Limiting factors?
* Programs dependencies
* Hard to detect dependencies = be conservative
— e.g. Pointer Aliasing: A[0] += 1; B[0O] *= 2;
Hard to expose parallelism

— Can only issue a few instructions ahead of PC

Structural limits
— Memory delays and limited bandwidth

Hard to keep pipelines full

2,000,000,000 - Dual-core Itanium 2. ::
1,000,000,000 — - ,’ ‘

Hankm 2 with qu,.',“ -.' ,r‘_.‘h. " ‘ Klo

100,000,000 Itanium 2‘

Curve shows ‘Moore's Law". L’
10,000,000 — transistor count doubling 7 g erl

Pl

avery two years =i

.
1,000,000 — 486".," Pentium

386,
100,000 286?/’

=
=
o
O
p—
S
2,
)
C
T
 —

’3088

2,300 .»""5080
~774004° 8008

1980 2000 2008

10,000 —

Power Efficiency

Q: Does multiple issue / ILP cost much?
A: Yes. Dynamic issue & speculation requires power

I N N el P

| Intel 486 1989 5 MHz

Intel Pentium 1993 a6 MHz

| Intel Pentium Pro 1997 200 MHz
| Intel Pentium 4 Willamette 2001 2000 MHz
| Intel Pentium 4 Prescott 2004 3600 MHz
| Intel Core 2006 | 2930 MHz
Intel Core i5 Nehalem 2010 3300 MHz
l Intel Core i5 vy Bridge 2012 3400 MHz

- Multiple simpler cores may be better?

Why Multicore?

Moore’s law
* Alaw about transistors
* Smaller means more transistors per die

* And smaller means faster too

But: need to worry about power too...

Power Wall

Power = capacitance * voltage? * frequency

approx. capacitance * voltage3

Reducing voltage helps (a lot)

Better cooling helps

The power wall
* We can’t reduce voltage further - leakage

e We can’t remove more heat

Power Limits

i I E E EE EEEEEEEEEEEEEEEEEEEEEEEEEEENEEEEEEERN
3

L
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEERmR

™~
P
£
o
2
—_—
@
=

Peintium lll ® processor
entiym Il ® processor

Pentium Pro
Pentium ® proce ssor

I E I EEEEEEEEERN

pProce SSor

1.50 1p D.7u O.5p D.35p 0.251 0.18u 0.13u 0.1p 0.07u

Why Multicore?

Performance 1.2x Single-Core
Power 1.7x Overclocked +20%

Performance 1.0x
Single-Core
Power 1 Ox 8

Performance 1.6X pual-Core
Power 1.02x Underclocked -20%

Inside the Processor

AMD Barcelona Quad-Core: 4 processor cores

HT PHY, link 1 |Slow I/O

128-bit FPU

Load/| L1 Data
2MB Store | Cache
Shared

L3 Execution| L2
Citl

Cache | Fetch/

Decode/ | L1 Instr

Branch | Cache

HT PHY, link 2

Northbridge

<I7T TOO

HT PHY, link 3

HT PHY, link 4

Inside the Processor
Intel Nehalem Hex-Core

| iMefmiory Cofrtroller 1 1

L1 DataCache L2 Cache
s _ & Interrupt
SExecution , Servieing

r»/emory Ordenng
- & Execution Paging. -

| - : Branch Prediction
"~ ~<Ipstiction _ ‘
| Réordermg S ,

S;S&??;,i;’;%t ~Microcode __Instruction Fetch

&1 Cache , ==|E

1IEDDDDEDDiD*ﬂﬁﬁD]iDﬂijjiiiiff5?

Hyperthreading

Hyperthreads (Intel)
* |llusion of multiple cores on a single core

Switch between hardware threads for stalls

Fine grained and coarse grained

Hyperthreading

Multi-Core vs. Multi-Issue vs. HT

Programs: 1 N
Num. Pipelines: 1 1
Pipeline Width: N N

Hyperthreads
 HT = Multilssue + extra PCs and registers — dependency logic
e HT = MultiCore — redundant functional units + hazard avoidance

Hyperthreads (Intel)
* [llusion of multiple cores on a single core
* Easy to keep HT pipelines full + share functional units

Example: All of the above

\

JOHEB

~

| Memory

-

=

Intel” Scalable Memory Buffer

8 multiprocessors
4 core per multiprocessor
2 HT per core

Dynamic multi-issue: 4 issue
Pipeline depth: 16

Note: each processor may
have multiple processing
cores, so this is an example
of a multiprocessor multicore
hyperthreaded system

Parallel Programming

Q: So lets just all use multicore from now on!
A: Software must be written as parallel program

Multicore difficulties
* Partitioning work, balancing load
e Coordination & synchronization
 Communication overhead

* How do you write parallel programs?
— ... without knowing exact underlying architecture?

Work Partitioning

Partition work so all cores have something to do

Load Balancing

Need to partition so all cores are actually working

Amdahl’s Law

If tasks have a serial part and a parallel part...

Example:
step 1: divide input data into n pieces
step 2: do work on each piece
step 3: combine all results

Recall: Amdahl’s Law

As number of cores increases ...

* time to execute parallel part? goes to zero
* time to execute serial part? Remains the same

e Serial part eventually dominates

Amdahl’s Law

Pitfall: Amdahl’s Law

Execution time after improvement =
affected execution time

amount of improvement
+ execution time unaffected

T

= Taffected improvement factor + T

improved unaffected

Pitfall: Amdahl’s Law

Improving an aspect of a computer and expecting a
proportional improvement in overall performance

T

= Taffected /improvement factor + T

improved unaffected

Example: multiply accounts for 80s out of 100s

* How much improvement do we need in the multiply
performance to get 5x overall improvement?

20 =80/n + 20

— Can’t be done!

Scaling Example

Workload: sum of 10 scalars, and 10 x 10 matrix sum
* Speed up from 10 to 100 processors?

Single processor: Time

10 processors
°* Time =
* Speedup =

100 processors
* Time =

* Speedup =

Assumes load can be balanced across processors

Scaling Example
What if matrix size is 100 x 1007

Single processor: Time = (10 + 10000) x t_,,

10 processors

* Time =

* Speedup =
100 processors

* Time =

* Speedup =
Assuming load balanced

Scaling

Strong scaling vs. weak scaling

Strong scaling: scales with same problem size

Weak scaling: scales with increased problem size

Parallel Programming

Q: So lets just all use multicore from now on!
A: Software must be written as parallel program

Multicore difficulties

/ * Partitioning work

[e Coordination & synchronization]
e Communications overhead HW

career...

* Balancing load over cores
* How do you write parallel programs?

\ — ... without knowing exact underlying architectur?

Synchronization

P&H Chapter 2.11 and 5.10

Parallelism and Synchronization

How do | take advantage of multiple processors;
parallelism?

How do | write (correct) parallel programs, cache
coherency and synchronization?

What primitives do | need to implement correct
parallel programs?

Topics

Understand Cache Coherency

Synchronizing parallel programs
* Atomic Instructions
* HW support for synchronization

How to write parallel programs
 Threads and processes
* C(Critical sections, race conditions, and mutexes

Parallelism and Synchronization

Cache Coherency Problem: What happens when
two or more processors cache shared data?

Parallelism and Synchronization

Cache Coherency Problem: What happens when
two or more processors cache shared data?

i.e. the view of memory held by two different
processors is through their individual caches

As a result, processors can see different
(incoherent) values to the same memory location

Parallelism and Synchronization

Each processor core has its own L1 cache

register register register register
file file file file

addr addr
d,

addr addr

control don dow control Aot P control dn dour control o Gou

memory memory

memory memory

= = =
detect _ detect _ detect _ detect
hazard hazard hazard
N3 on rite- Instruction nd on i Instruction N3 on
Decode Decode Decode

hazard
Instruction . [Wri Instruction
Fetch Fetch

=
IF/ID EX/MEM MEM/WB IF/ID EX/MEM MEM/WB EX/MEM MEM/WB

Memory Back Fetch Fetch

Parallelism and Synchronization

Each processor core has its own L1 cache

register register

register register
file file

file file

addr

addr addr
d,

addr

control don dow control Aot control o Gou control dn dour

memory memory memory memory

= = =
detect detect detect detect
hazard hazard

hazard hazard
Instruction o [wri Instruction o rite- Instruction Instruction
Fetch Fetch Back Fetch Fetch

IF/ID ID/EX | EX/MEM MEM/WB EX/MEM MEM/WB EX/MEM MEM/WB

Interconnect

/0

Shared Memory Multiprocessors
Shared Memory Multiprocessor (SMP)

* Typical (today): 2 — 8 cores each

 HW provides single physical address space for all
pProcessors

* Assume uniform memory access (ignhore NUMA)

Core?2

Cache

{

Interconnect

{

/0

Shared Memory Multiprocessors
Shared Memory Multiprocessor (SMP)

* Typical (today): 2 — 8 cores each

 HW provides single physical address space for all
pProcessors

* Assume uniform memory access (ignhore NUMA)

Interconnect

{

/0

Cache Coherency Problem

Thread A (on Core0) Thread B (on Corel)
for(inti=0,i<5;i++) { for(intj=0;j<5; j++) {
X=x+1; X=x+1;

J J

What will the value of x be after both loops finish?

Start: x=0

CoreO Corel
Cache Cache

{ {

Interconnect

{ {

/0

iClicker

Thread A (on Core0) Thread B (on Corel)
for(inti=0,i<5;i++) { for(intj=0;j<5; j++) {
X=xX+1; X=x+1;

J J

Cache Coherency Problem

Thread A (on Core0) Thread B (on Corel)
for(inti=0,i<5;i++){ for(intj=0;j<5;j++){
LW StO, addr(x) LW StO, addr(x)

ADDIU $t0, St0, 1 ADDIU S$t0, $tO, 1

SW St0, addr(x) SW St0, addr(x)

iClicker

Thread A (on Core0) Thread B (on Corel)
for(inti=0,i<5;i++) { for(intj=0;j<5; j++) {
X=xX+1; X=x+1;

J J

What will the value of x be after both loops finish?

a) 6

b) 8

c) 10

d) All of the above

e) None of the above

