
CS 3410, Spring 2014

Computer Science

Cornell University

See P&H Chapter: 4.10, 1.7, 1.8, 5.10, 6

Next five weeks

• Week 11 (Apr 15): Proj3 release, Lab3 due Wed, HW2
due Sat

• Week 12 (Apr 22): Lab4 release and Proj3 due Fri

• Week 13 (Apr 29): Proj4 release, Lab4 due Tue, Prelim2

• Week 14 (May 6): Proj3 tournament Mon, Proj4 design
doc due

Final Project for class

• Week 15 (May 13): Proj4 due Wed

Many ways to improve performance

Instruction Level Parallelism

Multicore

Performance in multicore

Next 2 lectures: synchronization

Next lecture: GPU

We have looked at

• Pipelining

• To speed up:

• Deeper pipelining

• Make the clock run faster

• Parallelism

• Not a luxury, a necessity

Pipelining: execute multiple instructions in parallel

Q: How to get more instruction level parallelism?

A: Deeper pipeline
– E.g. 250MHz 1-stage; 500Mhz 2-stage; 1GHz 4-stage; 4GHz

16-stage

Pipeline depth limited by…
– max clock speed

– min unit of work (less work per stage  shorter clock
cycle)

– dependencies, hazards / forwarding logic

Pipelining: execute multiple instructions in parallel

Q: How to get more instruction level parallelism?

A: Multiple issue pipeline
– Start multiple instructions per clock cycle in duplicate

stages

ALU/Br

LW/SW

Static multiple issue

aka Very Long Instruction Word

Decisions made by compiler

Dynamic multiple issue

Decisions made on the fly

Cost: More execute hardware

Reading/writing register files: more ports

a.k.a. Very Long Instruction Word (VLIW)

Compiler groups instructions to be issued together

• Packages them into “issue slots”

Q: How does HW detect and resolve hazards?

A: It doesn’t

 Simple HW, assumes compiler avoids hazards

Example: Static Dual-Issue 32-bit MIPS

• Instructions come in pairs (64-bit aligned)

– One ALU/branch instruction (or nop)

– One load/store instruction (or nop)

Two-issue packets

• One ALU/branch instruction

• One load/store instruction

• 64-bit aligned

– ALU/branch, then load/store

– Pad an unused instruction with nop

• Delay slot: 2 instructions (1 cycle)
Address Instruction type Pipeline Stages

n ALU/branch IF ID EX MEM W

B

n + 4 Load/store IF ID EX MEM W

B

n + 8 ALU/branch IF ID EX M

E

M

WB

n + 12 Load/store IF ID EX M

E

WB

Loop: lw $t0, 0($s1) # $t0=array element
addu $t0, $t0, $s2 # add scalar in $s2
sw $t0, 0($s1) # store result
addi $s1, $s1,–4 # decrement pointer
bne $s1, $zero, Loop # branch $s1!=0

Schedule this for dual-issue MIPS

Loop: lw $t0, 0($s1) # $t0=array element
addu $t0, $t0, $s2 # add scalar in $s2
sw $t0, 0($s1) # store result
addi $s1, $s1,–4 # decrement pointer
bne $s1, $zero, Loop # branch $s1!=0

ALU/branch Load/store cycle

Loop: 1

2

3

4

Reorder instructions

To fill the issue slot with useful work

Complicated: exceptions may occur

Move instructions to fill in nops

Need to track hazards and dependencies

Loop unrolling

Loop: lw $t0, 0($s1) # $t0=array element
addu $t0, $t0, $s2 # add scalar in $s2
sw $t0, 0($s1) # store result
addi $s1, $s1,–4 # decrement pointer
bne $s1, $zero, Loop # branch $s1!=0

Schedule this for dual-issue MIPS

Loop: lw $t0, 0($s1) # $t0=array element
addu $t0, $t0, $s2 # add scalar in $s2
sw $t0, 0($s1) # store result
addi $s1, $s1,–4 # decrement pointer
bne $s1, $zero, Loop # branch $s1!=0

ALU/branch Load/store cycle

Loop: nop lw $t0, 0($s1) 1

addi $s1, $s1,–4 nop 2

addu $t0, $t0, $s2 nop 3

bne $s1, $zero, Loop sw $t0, 4($s1) 4

5 instructions/4 cycles = IPC = 1.25
4 cycles/5 instructions = CPI = 0.8

Compiler scheduling for dual-issue MIPS…
Loop: lw $t0, 0($s1) # $t0 = A[i]

lw $t1, 4($s1) # $t1 = A[i+1]
addu $t0, $t0, $s2 # add $s2
addu $t1, $t1, $s2 # add $s2
sw $t0, 0($s1) # store A[i]
sw $t1, 4($s1) # store A[i+1]
addi $s1, $s1, +8 # increment pointer
bne $s1, $s3, Loop # continue if $s1!=end

ALU/branch slot Load/store slot cycle
Loop: nop lw $t0, 0($s1) 1

nop lw $t1, 4($s1) 2
addu $t0, $t0, $s2 nop 3
addu $t1, $t1, $s2 sw $t0, 0($s1) 4
addi $s1, $s1, +8 sw $t1, 4($s1) 5
bne $s1, $s3, Loop nop 6

8 cycles

6 cycles

= CPI = 0.75

delay slot

Compiler scheduling for dual-issue MIPS…
Loop: lw $t0, 0($s1) # $t0 = A[i]

lw $t1, 4($s1) # $t1 = A[i+1]
addu $t0, $t0, $s2 # add $s2
addu $t1, $t1, $s2 # add $s2
sw $t0, 0($s1) # store A[i]
sw $t1, 4($s1) # store A[i+1]
addi $s1, $s1, +8 # increment pointer
bne $s1, $s3, Loop # continue if $s1!=end

ALU/branch slot Load/store slot cycle
Loop: nop lw $t0, 0($s1) 1

addi $s1, $s1, +8 lw $t1, 4($s1) 2
addu $t0, $t0, $s2 nop 3
addu $t1, $t1, $s2 sw $t0, -8($s1) 4
bne $s1, $s3, Loop sw $t1, -4($s1) 5

8 cycles

5 cycles

= CPI = 0.625

Compiler scheduling for dual-issue MIPS…
lw $t0, 0($s1) # load A
addi $t0, $t0, +1 # increment A
sw $t0, 0($s1) # store A
lw $t0, 0($s2) # load B
addi $t0, $t0, +1 # increment B
sw $t0, 0($s2) # store B

ALU/branch slot Load/store slot cycle
nop lw $t0, 0($s1) 1
nop nop 2
addi $t0, $t0, +1 nop 3
nop sw $t0, 0($s1) 4
nop lw $t0, 0($s2) 5
nop nop 6
addi $t0, $t0, +1 nop 7
nop sw $t0, 0($s2) 8

Compiler scheduling for dual-issue MIPS…
lw $t0, 0($s1) # load A
addi $t0, $t0, +1 # increment A
sw $t0, 0($s1) # store A
lw $t1, 0($s2) # load B
addi $t1, $t1, +1 # increment B
sw $t1, 0($s2) # store B

ALU/branch slot Load/store slot cycle
nop lw $t0, 0($s1) 1
nop nop 2
addi $t0, $t0, +1 nop 3
nop sw $t0, 0($s1) 4
nop lw $t1, 0($s2) 5
nop nop 6
addi $t1, $t1, +1 nop 7
nop sw $t1, 0($s2) 8

Compiler scheduling for dual-issue MIPS…
lw $t0, 0($s1) # load A
addi $t0, $t0, +1 # increment A
sw $t0, 0($s1) # store A
lw $t1, 0($s2) # load B
addi $t1, $t1, +1 # increment B
sw $t1, 0($s2) # store B

ALU/branch slot Load/store slot cycle
nop lw $t0, 0($s1) 1
nop lw $t1, 0($s2) 2
addi $t0, $t0, +1 nop 3
addi $t1, $t1, +1 sw $t0, 0($s1) 4
nop sw $t1, 0($s2) 5

Problem: What if $s1 and $s2 are equal (aliasing)? Won’t work

a.k.a. SuperScalar Processor

CPU examines instruction stream and chooses
multiple instructions to issue each cycle

• Compiler can help by reordering instructions….

• … but CPU is responsible for resolving hazards

a.k.a. SuperScalar Processor

Speculation/Out-of-order Execution

• Execute instructions as early as possible

• Aggressive register renaming

• Guess results of branches, loads, etc.

• Roll back if guesses were wrong

• Don’t commit results until all previous insts. are
retired

To handle unpredictable stalls

Like cache misses

Hides details of pipeline from applications

Abstraction

Q: Does multiple issue / ILP work?

A: Kind of… but not as much as we’d like

Limiting factors?

• Programs dependencies

• Hard to detect dependencies  be conservative

– e.g. Pointer Aliasing: A[0] += 1; B[0] *= 2;

• Hard to expose parallelism

– Can only issue a few instructions ahead of PC

• Structural limits

– Memory delays and limited bandwidth

• Hard to keep pipelines full

486

286

8088

8080
80084004

386

Pentium

AtomP4

Itanium 2
K8

K10

Dual-core Itanium 2

Q: Does multiple issue / ILP cost much?

A: Yes. Dynamic issue & speculation requires power

Multiple simpler cores may be better?

Moore’s law

• A law about transistors

• Smaller means more transistors per die

• And smaller means faster too

But: need to worry about power too…

Power = capacitance * voltage2 * frequency

approx. capacitance * voltage3

Reducing voltage helps (a lot)

Better cooling helps

The power wall

• We can’t reduce voltage further - leakage

• We can’t remove more heat

Hot Plate

Rocket Nozzle

Nuclear Reactor

Surface of Sun

Xeon

180nm 32nm

AMD Barcelona Quad-Core: 4 processor cores

Intel Nehalem Hex-Core

If tasks have a serial part and a parallel part…

Example:

step 1: divide input data into n pieces

step 2: do work on each piece

step 3: combine all results

Recall: Amdahl’s Law

As number of cores increases …

• time to execute parallel part?

• time to execute serial part?

• Serial part eventually dominates

goes to zero

Remains the same

affected execution time

amount of improvement

+ execution time unaffected

Execution time after improvement =

Timproved =
T
affected

improvement factor
+ Tunaffected

Example: multiply accounts for 80s out of 100s

• How much improvement do we need in the multiply

performance to get 5× overall improvement?

20 = 80/n + 20

Improving an aspect of a computer and expecting a
proportional improvement in overall performance

– Can’t be done!

Timproved =
T
affected

improvement factor
+ Tunaffected

Workload: sum of 10 scalars, and 10 × 10 matrix sum
• Speed up from 10 to 100 processors?

Single processor: Time = (10 + 100) × tadd

10 processors
• Time = 100/10 × tadd + 10 × tadd = 20 × tadd

• Speedup = 110/20 = 5.5

100 processors
• Time = 100/100 × tadd + 10 × tadd = 11 × tadd
• Speedup = 110/11 = 10

Assumes load can be balanced across processors

What if matrix size is 100 × 100?

Single processor: Time = (10 + 10000) × tadd

10 processors

• Time = 10 × tadd + 10000/10 × tadd = 1010 × tadd

• Speedup = 10010/1010 = 9.9

100 processors

• Time = 10 × tadd + 10000/100 × tadd = 110 × tadd

• Speedup = 10010/110 = 91

Assuming load balanced

Strong scaling vs. weak scaling

Strong scaling: scales with same problem size

Weak scaling: scales with increased problem size

