Multicore and Parallelism

CS 3410, Spring 2014
Computer Science
Cornell University

See P&H Chapter: 4.10, 1.7, 1.8, 5.10, 6

Administrivia
Next five weeks

 Week 11 (Apr 15): Proj3 release, Lab3 due Wed, HW?2
due Sat

 Week 12 (Apr 22): Lab4 release and Proj3 due Fri
 Week 13 (Apr 29): Proj4 release, Lab4 due Tue, Prelim2

* Week 14 (May 6): Proj3 tournament Mon, Proj4 design
doc due

Final Project for class
* Week 15 (May 13): Proj4 due Wed

Today

Many ways to improve performance
Instruction Level Parallelism
Multicore

Performance in multicore

Next 2 lectures: synchronization

Next lecture: GPU

How to improve performance?

We have looked at
* Pipelining

* To speed up:
* Deeper pipelining
 Make the clock run faster

* Parallelism
Not a luxury, a necessity

Instruction-Level Parallelism (ILP)

Pipelining: execute multiple instructions in parallel

Q: How to get more instruction level parallelism?

A: Deeper pipeline
— E.g. 250MHz 1-stage; 500Mhz 2-stage; 1GHz 4-stage; 4GHz
16-stage

Pipeline depth limited by...
— max clock speed
— min unit of work (less work per stage = shorter clock
cycle)
— dependencies, hazards / forwarding logic

Instruction-Level Parallelism (ILP)

Pipelining: execute multiple instructions in parallel
Q: How to get more instruction level parallelism?

A: Multiple issue pipeline
— Start multiple instructions per clock cycle in duplicate
stages

ALU/Br —

LW/SW ——

Multiple issue pipeline

Static multiple issue
aka Very Long Instruction Word
Decisions made by compiler

Dynamic multiple issue
Decisions made on the fly

Cost: More execute hardware
Reading/writing register files: more ports

Static Multiple Issue

a.k.a. Very Long Instruction Word (VLIW)
Compiler groups instructions to be issued together

* Packages them into “issue slots”

Q: How does HW detect and resolve hazards?
A: It doesn’t

- Simple HW, assumes compiler avoids hazards

Example: Static Dual-Issue 32-bit MIPS
* Instructions come in pairs (64-bit aligned)

— One ALU/branch instruction (or nop)
— One load/store instruction (or nop)

MIPS with Static Dual Issue

Two-issue packets
* One ALU/branch instruction
* One load/store instruction
* 64-bit aligned
—ALU/branch, then load/store
—Pad an unused instruction with nop
* Delay slot: 2 instructions (1 cycle)

Address | Instruction type Pipeline Stages
n ALU/branch IF ID EX MEM (W
B
n+4 Load/store 1= ID EX MEM (W
B
n+8 ALU/branch IF ID EX |M wB
E
\Y
n+12 Load/store IF ID EX |M WB

Scheduling Example

Schedule this for dual-issue MIPS

Loop: Tw $t0, 0($s1) # $tO=array element
addu $t0, $t0, $s2 # add scalar in $s2
sw $t0, 0($sl) # store result
addi $s1, $s1,-4 # decrement pointer
bne $s1, $zero, Loop # branch $s1!=0

ALU/branch Load/store cycle

Loop: 1

2
3
4

Speculation

Reorder instructions
To fill the issue slot with useful work
Complicated: exceptions may occur

Optimizations to make it work

Move instructions to fill in nops
Need to track hazards and dependencies

Loop unrolling

Scheduling Example

Schedule this for dual-issue MIPS

$tO=array element
add scalar in $s2

store result

decrement pointer

Loop # branch $s1!=0

ALU/branch

Load/store cycle
Loop: | hop Tw $t0, 0($sl) 1
addi , $s1,-4 nop 2
addu $t0, $t0, $s2 nop 3
bne , $zero, Loop |sw $t0, 4($sl) 4

5 instructions/4 cycles = IPC = 1.25

4 cycles/5 instructions = CPI1=0.8

Compiler scheduling for dual-issue MIPS...

Loop:

Loop:

lw $to,
1w $t1,
addu $to,
addu $t1,
sw $to,
sw $t1,
addi $s1,
bne $s1,
ALU/branch
nop
nop
addu $to,
addu $t1,
addi $s1,
bne $s1,

Scheduling Example

8>c_ycles

_——
0(%$s1) # $to = A[i]
4($s1) # $t1 = A[i+1]
$t0, $s2 # add $s2
$t1, $s2 # add $s2
0(%$s1) # store A[i]
4($s1) # store A[i+1]
$s1, +8 # increment pointer
$s3, Loop # continue if $sll=en
slot Load/store slot cycle
delay slot Iw—3t8y o($s1) 17
w $t1, 4($s1) 2
§t0,)«52 nop 3
$t1, $s2 SW $t0, 0($sl) 4
$s1, +8 sw $t1, 4(%$s1) 5
$s3, Loop nop 6
™

=CPI=0.75

g:_ycles

Loop:

Loop:

Scheduling Example

Compiler scheduling for dual-issue MIPS...

lw $to, 0($s1)
lw $t1, 4($s1)
addu $to, $to, $s2
addu $t1, $t1, $s2
sw $to, 0($s1)
sw $tl, 4($sl)
addl $s1, $s1, +8
brme—$515$535 oo
ALU/branch slot
nop
addi $s1, $s1, +8
addu $to, $to, $s2
addu $t1, $t1, $s2
bne $s1, $s3, Loop

$to
$t1
add $s2
add $s2
store A[1i]

A[i]
A[i+1]

H

\

increment pointer
continue if $sl!=en
e

H#
H#
H#
store A[i+1]
H#
#

Load/store slot
lw $to, 0(%$s1)
lw $t1, 4(%$s1)
nop

sw $to, ($s1)
sw $t1, ($s1)

= CPI =0.625

gc_ycles

cycle

\

=

5>Eycles

‘\ uviph wiN

Limits of Static Scheduling

Compiler scheduling for dual-issue MIPS...

lw $to, 0($sl) # load A

addi $to, $to, +1 # increment A

sw $to, 0($s1) # store A

lw $to, 0($s2) # load B

addi $to, $to, +1 # increment B

sw $to, 0($s2) # store B
ALU/branch slot Load/store slot cycle
nop lw $to, 0(%$s1) 1
nop gle]s p
addi $to, $to, +1 nop 3
nop sw $to, 0(%$s1) 4
nop lw $to, 0(%$s2) 5
nop nop 6
addi $to, $to, +1 nop 7
nop sw $to, 0($s2) 8

Limits of Static Scheduling

Compiler scheduling for dual-issue MIPS...
load A

lw $to, 0($sl)
addi $to, $to, +1
sw $to, 0(%$sl)
Iw $t1, 0($s2)
addi $t1, $t1, +1
sw $t1, 0($s2)

ALU/branch slot
nop

nop

addi $to, $to, +1

nop
nop
nop
addi $t1, $t1, +1
nop

H H H HH

increment A
store A
load B

increment B
store B

Load/store slot

lw $to, o($s1)
op
nop
sw____$to, 0($s1)
lw $t1, ©($s2)
nop

Cnos
sw $tl, 0(%$s2)

cycle
1

cONO VT A~ WN

Limits of Static Scheduling

Compiler scheduling for dual-issue MIPS...

w $te, o(3s1)

addi $to, $to, +1
sw $to, 0($s1)
lw $t1, ©

addi $t1, $t1, +1
sw $t1, 0($s2)

ALU/branch slot
nop

nop

addi $to, $to, +1
addi $t1, $t1, +1
nop

load A
increment A
store A
load B
increment B
store B

H H H HH

Load/store slot cycle
lw $to, 0(%$s1) 1
lw $tl, 0(%$s2)
nop

sw $to, 0(%$s1)
sw $tl, 0(%$s2)

uvih WwiN

Problem: What if Ss1 and Ss2 are equal (aliasing)? Won’t work

Dynamic Multiple Issue

a.k.a. SuperScalar Processor
CPU examines instruction stream and chooses
multiple instructions to issue each cycle

* Compiler can help by reordering instructions....
* ... but CPU is responsible for resolving hazards

Dynamic Multiple Issue

a.k.a. SuperScalar Processor

Speculation/Out-of-order Execution
e Execute instructions as early as possible
* Aggressive register renaming
* Guess results of branches, loads, etc.

Roll back if guesses were wrong

* Don’t commit results until all previous insts. are
retired

Dynamic Multiple Issue

Reservation
station

Functional
units

Instruction fetch
and decode unit

Reservation
station

Reservation
station

Floating
point

Commit
unit

In-order issue

Reservation

station

Out-of-order execute

In-order commit

Why dynamic scheduling?

To handle unpredictable stalls
Like cache misses

Hides details of pipeline from applications
Abstraction

Does Multiple Issue Work?

Q: Does multiple issue / ILP work?
A: Kind of... but not as much as we’d like
Limiting factors?

* Programs dependencies

* Hard to detect dependencies = be conservative
— e.g. Pointer Aliasing: A[0] += 1, B[0] *=2;

Hard to expose parallelism
— Can only issue a few instructions ahead of PC

Structural limits
— Memory delays and limited bandwidth

Hard to keep pipelines full

2,000,000,000 Dual-core Itanium 2 . scuce i

®GTI00

1 .DDG.GGG{]G[} - I:""" =°' ll U

Npnirs l.l.lll"ir.-'lll:.;-.-l-.;-. '!‘..I;Klo

1E-’.I| 2 Duo
Itanlum 2
100,000,000 .

Curve shows ‘Mooare's Law”,
10,000,000 — transistor count doubding

avary Lwo years

486. Pentium

100,000 286::”

1,000,000 —

-]
-
=
o
L
| =
o
i
IE
L]
=
E
I—.

8088

_*8080
2390 40048008

1980 2000 2008

10,000 —

Power Efficiency

Q: Does multiple issue / ILP cost much?
A: Yes. Dynamic issue & speculation requires power

nn-nﬂlﬂhrf
Microprocassor

Intel Pentium

: Intel Pentium Pro

Intel Pentium 4 Willamette 200 2000 MHz

Intel Pantium 4 FPrescott 200 600 MHz
| Intel Core
Intel Core iS5 Mehalem

Intel Core i5 vy Bridge 3400 MHz

- Multiple simpler cores may be better?

Why Multicore?

Moore’s law
* A law about transistors
* Smaller means more transistors per die
* And smaller means faster too

But: need to worry about power too...

Power Wall

Power = capacitance * voltage? * frequency
approx. capacitance * voltage3

Reducing voltage helps (a lot)
Better cooling helps

The power wall
* We can’t reduce voltage further - leakage
* We can’t remove more heat

Watts/cm’

10000 ¢

-
S I I E E EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEENN

1000

100 |

10

Power Limits

 Surface of Sun

"Rocket Nozzle

' Nuclear Reactor

Hot Plate

; Pentium Pro
386 Pentium ® processor
' #1486

L
ji I I EEEEEEEEEEEEEEEEEEEEEEEEENEEENEEEEEEEEEN
>

L~

tium lll ® processor

entium |l ® processor

proce ssor

180nm

J(.eon

32nm

1.54 1p D.7p O.5p D.35p 0.25u 0.18u 0.13u 0.1u 0.07p

Inside the Processor

AMD Barcelona Quad-Core: 4 processor cores

HT PHY, link 1 |Slow |/o

128-bit FPU

oad/ | L1 Data

L
2MB Store | Cache
Shared

(aV}
-
=
o
I
o
[
I

e Execution| L2
L3 Citl
N A Cache | Fetch/ [
N Decode/ | L1 Instr
B Branch Cache D
R D
4 y Northbridge
2 s :?:]] P
2 s | H
d JP::L::: I i Y
B § § il- ‘l\‘ o]
| Y o e
& 2 i v | =
‘ R siel =
[:~ : >__
] i A I
e) o
i ! i -
| & I
I

HT PHY, link 4 |Slow I/O

Inside the Processor

Intel Nehalem Hex-Core

MISE 0 and'QPIL

:
—_—
| & B9
e |
—

:
Nead
N
—
—
1y

.
14
‘Jl
—t
S|
n
L —
_
B
—_—

. _ mxTa ==
REES | RN | FERY | MR .i ' l.d.liu e 'i:i'l:‘:;; i u ¥ l It. i PRI LR e IHI lm -1}
el e " S on v 30 L LS .:n_. ki ._zul owvd wmed save bvew

——eme — e

Amdahl’s Law

If tasks have a serial part and a parallel part...
Example:
step 1: divide input data into n pieces
step 2: do work on each piece
step 3: combine all results
Recall: Amdahl’s Law

As number of cores increases ...
* time to execute parallel part? goes to zero
* time to execute serial part? Remains the same

* Serial part eventually dominates

Amdahl’s Law

Pitfall: Amdahl’s Law

Execution time after improvement =
affected execution time

amount of improvement
+ execution time unaffected

T — Taffected

improved improvement factor+ Tunaffected

Pitfall: Amdahl’s Law

Improving an aspect of a computer and expecting a
proportional improvement in overall performance

_ — Taffected + T
improved improvement factor unaffected

Example: multiply accounts for 80s out of 100s

* How much improvement do we need in the multiply
performance to get 5x overall improvement?

T

20 = 80/“ + 20 Can’t be done!

Scaling Example

Workload: sum of 10 scalars, and 10 X 10 matrix sum
e Speed up from 10 to 100 processors?

Single processor: Time = (10 + 100) x t_,
10 processors

* Time =100/10 xt_,+10 xt ,=20X%t_,
* Speedup =110/20=15.5

100 processors
* Time=100/100 x t_,+10 %t ,,=11%xt_,
* Speedup =110/11 =10

Assumes load can be balanced across processors

Scaling Example
What if matrix size is 100 x 100?

Single processor: Time = (10 + 10000) X t_4
10 processors
* Time = 10 x t_,, + 10000/10 X t,,, = 1010 X t_,,
* Speedup = 10010/1010 = 9.9
100 processors
* Time =10 X t_,, + 10000/100 % t_,, = 110 X t_,
e Speedup =10010/110 =91
Assuming load balanced

Scaling

Strong scaling vs. weak scaling

Strong scaling: scales with same problem size

Weak scaling: scales with increased problem size

