Traps, Exceptions, System Calls,
& Privileged Mode

Prof. Kavita Bala and Prof. Hakim Weatherspoon
CS 3410, Spring 2014
Computer Science
Cornell University

P&H Chapter 4.9, pages 445—-452, appendix A.7

Heartbleed Security Bug

Heartbleed Security Bug

Heartbleed is a security bug in the open-source
OpenSSL cryptography library, widely used to
implement the Internet's Transport Layer Security

(TLS) protocol.

“...worst vulnerability found since commercial

traffic began to flow over the internet.” rorbes, “massive
Internet Security Vulnerability—Here’s where you need to do,” Apr 10 2014

17% (0.5million) secure web servers

vulnerable to bug—netcraft, Ltd, Apr 8, 2014
* Amazon, Akamai, GitHub, Wikipedia, etc

Heartbleed Security Bug v

How does it work?
* Lack of bounds checking
o “Buffer over-read”

Heartbeat request
(normal)

Heartbleed request
(attack)

http://en.wikipedia.org/wiki/Heartbleed

Heartbleed Security Bug v

How does it work?

* Lack of bounds checking

* “Buffer over-read”

* SW allows more data to be read than should be allowed
* Malloc/Free did not clear memory

* Req with a large “length” field could return sensitive
data

e Unauthenticated user can send a “heartbeat” and
receive sensitive data

Heartbleed Security Bug v

How does it work?

* Lack of bounds checking
e “Buffer over-read”

Similar bug/vulnerability due to “Buffer overflow”

* Lab3
* Browser implementation lacks bounds checking

saved ra

saved fp

saved regs

arguments

saved ra

saved fp

saved regs

local variables

Heartbleed Security Bug v

Buffer Overflow from lec12 and lab3

blue() {
pink(0,1,2,3,4,5);

h

pink(int a, int b, int ¢, intd, int e, intf) {
orange(10,11,12,13,14);

b

arguments

orange(int a, int b, int ¢, int, d, int e) {

saved ra

char buf[100];

saved fp

gets(buf); // read string, no check!

local variables

¥
~——— buf[100]

What happens if more than 100 bytes

is written to buf?

IELGEEY,

Worst Internet security vulnerability found yetv
due systems practices 101 that we learn in C53410,
lack of bounds checking!

Big Picture

How do we protect programs from one another?
How do we protect the operating system (OS) from
programs?

How does the CPU (and software [0OS]) handle
exceptional conditions. E.g. Div by 0, page fault,
syscall, etc?

Goals for Today
Operating System
Privileged mode
Hardware/Software Boundary

Exceptions vs Interrupts vs Traps vs Systems calls

Next Goal

How do we protect programs from one another?
How do we protect the operating system (OS) from
programs?

Privileged Mode
aka Kernel Mode

Operating System

Some things not available to untrusted programs:

* MMU instructions, Exception registers, HALT
instruction, talk to 1/O devices, OS memory, ...

Need trusted mediator: Operating System (OS)

e Safe control transfer

 Data isolation untrusted

\ —
VM filesystem net

driver driver

MMU disk eth

Operating System

Trusted mediator is useless without a “privileged
mode”:

* Any program can muck with TLB, PageTables, OS code...

* A program can intercept exceptions of other programs
* OS can crash if program messes up Ssp, Sfp, Sgp, ...

Wrong: Make these instructions and registers
available only to “OS Code”

e “OS Code” == any code above 0x80000000
* Program can still JAL into middle of OS functions
* Program can still muck with OS memory, pagetables, ...

Privilege Mode
CPU Mode Bit / Privilege Level Status Register

Mode 0 = untrusted = user domain

* “Privileged” instructions and registers are disabled by CPU

Mode 1 = trusted = kernel domain

* Allinstructions and registers are enabled

Boot sequence:

* |oad first sector of disk (containing OS code) to well known
address in memory

* Mode €< 1; PC €< well known address
OS takes over...

* initialize devices, MMU, timers, etc.
* loads programs from disk, sets up pagetables, etc.
* Mode € 0; PC €& program entry point

(note: x86 has 4 levels x 3 dimensions, but only virtual machines uses any the middle)

Terminology
Trap: Any kind of a control transfer to the OS

Syscall: Synchronous (planned), program-to-kernel transfer
e SYSCALL instruction in MIPS (various on x86)

Exception: Synchronous, program-to-kernel transfer

* exceptional events: div by zero, page fault, page protection err,

Interrupt: Aysnchronous, device-initiated transfer

* e.g. Network packet arrived, keyboard event, timer ticks

* real mechanisms, but nobody agrees on these terms

Sample System Calls

System call examples:

putc(): Print character to screen

* Need to multiplex screen between competing
programs

send(): Send a packet on the network

* Need to manipulate the internals of a device
sbrk(): Allocate a page

* Needs to update page tables & MMU

sleep(): putcurrent prog to sleep, wake other
* Need to update page table base register

System Calls

System call: Not just a function call
* Don’t let program jump just anywhere in OS code
e OS can’t trust program’s registers (sp, fp, gp, etc.)

SYSCALL instruction: safe transfer of control to OS
* Mode < 0; Cause €< syscall; PC € exception vector
* In MIPS, jump to 0x8000 0180 for an exception
or 0x8000 0000 a TLB miss

MIPS system call convention:
e user program mostly normal (save temps, savera, ...)

* but: Sv0 = system call number, which specifies the
operation the application is requesting

Invoking System Calls

int getc() {
asm("addiu $2, %$0, 4");
asm("syscall™);

¥

char *gets(char *buf) {
while (...) {
buf[i] = getc();
}
}

Libraries and Wrappers

Compilers do not emit SYSCALL instructions
* Compiler doesn’t know OS interface

Libraries implement standard APl from system API

libc (standard C library):
» getc() = syscall
* sbrk() = syscall
* write() = syscall
» gets() 2 getc()
 printf() =2 write()
* malloc() =2 sbrk()

Where does OS live?

In its own address space?

* But then syscall would have to switch to a different
address space

* Also harder to deal with syscall arguments passed as
pointers

So in the same address space as process

* Use protection bits to prevent user code from writing
kernel

* Higher part of VM, lower part of physical memory

Anatom
OxFffffffc

@X80000000
OX7FFFFFFC

0x10000000

0x00400000
0X00000000

of an Executing Program

system reserved

stack

l
T

dynamic data (heap)

static data

top

code (text)

.data

system reserved

text

bottom

Full System Layout

Typically all kernel text, most data
* At same Virtual Addr in every address space

* Map kernel in contiguous physical memory
when boot loader puts kernel into physical
memory

0x800..0| OS Text
x7ff...f

The OS is omnipresent and steps in where
necessary to aid application execution

* Typically resides in high memory

When an application needs to perform a
privileged operation, it needs to invoke the

OS 0x000...0

OS Heap
OS Data

Stack

Heap

Data
Text

Virtual Memory

Full System Layout

OS Hea
OS Data

0x800..0| OS Text

Ox7ff...f

Stack
Heap OS Stack
Data OS Heap
Text OS Data

0x000...0 0x000..0'| OS Text

Virtual Memory Physical Memory

SYSCALL instruction

SYSCALL instruction does an atomic jump to a
controlled location (i.e. MIPS 0x8000 0180)

* Switches the sp to the kernel stack

Saves the o
Saves the o
Saves the o

d (user) SP value
d (user) PC value (= return address)
d privilege mode

Sets the new privilege mode to 1
Sets the new PC to the kernel syscall handler

SYSCALL instruction

Kernel system call handler carries out the desired
system call

e Saves callee-save registers

* Examines the syscall number
* Checks arguments for sanity
* Performs operation

 Stores result in vO

* Restores callee-save registers

* Performs a “return from syscall” (ERET) instruction,
which restores the privilege mode, SP and PC

IELGENEL

Worst Internet security vulnerability found yet
due systems practices 101 that we learn in C53410,
lack of bounds checking!

It is necessary to have a privileged mode (aka
kernel mode) where a trusted mediator, the
Operating System (OS), provides isolation between
programs, protects shared resources, and provides
safe control transfer.

Next Goal

How do we protect programs from one another?
How do we protect the operating system (OS) from
programs?

How does the CPU (and software [OS]) handle
exceptional conditions? E.g. syscall, Div by 0, page
fault, etc?

What are exceptions and how are they handled?

Exceptions

Exceptions are any unexpected change in control flow.
Interrupt -> cause of control flow change external
Exception -> cause of control flow change internal

* Exception: Divide by O, overflow

* Exception: Bad memory address

* Exception: Page fault

* Interrupt: Hardware interrupt (e.g. keyboard stroke)

We need both HW and SW to help resolve exceptions
* Exceptions are at the hardware/software boundary

Exceptions

Code Stored in Memory

(also, data and stack)
- compute
W A5 jump/branch
I arge
AO

iﬁ“ﬁ SO (zero)
B ==y $1(Sat)
il . registe A
e e |
o $oblfssp)
S31 (Sra)

Stack, Data, Code
Stored in Memor

- [Write-
S| Back

Instruction
Fetch

Execute Memory

IF/ID ID/EX EX/MEM MEM/WB

Exceptions

Code Stored in Memory EPC
(also, data and stack)

o "L SO (zero)

" 1 at|)
ax1080 E -b Ha ?eg §te
@g;gg I

> 5olfssp)
S31 (Sra)

Stack, Data, Code
Stored in Memor

Instruction
Fetch

- [Write-
S| Back

Execute Memory

IF/ID ID/EX EX/MEM MEM/WB

Hardware/Software Boundary

Hardware support for exceptions
* Exception program counter (EPC)
* Cause register

e Special instructions to load TLB
— Only do-able by kernel

Precise and imprecise exceptions

* |In pipelined architecture
— Have to correctly identify PC of exception
— MIPS and modern processors support this

Hardware/Software Boundary

Precise exceptions: Hardware guarantees
(similar to a branch)
* Previous instructions complete
* Later instructions are flushed
 EPC and cause register are set
* Jump to prearranged address in OS
* When you come back, restart instruction

* Disable exceptions while responding to one

— Otherwise can overwrite EPC and cause

Hardware/Software Boundary
What else requires both HW and SW?

Hardware/Software Boundary

Virtual to physical address translation is
assisted by hardware

Need both hardware and software support
Software

* Page table storage, fault detection and updating

— Page faults result in interrupts that are then handled
by the OS

— Must update appropriately Dirty and Reference bits
(e.g., “LRU) in the Page Tables

Hardware/Software Boundary

OS has to keep TLB valid

Keep TLB valid on context switch

* Flush TLB when new process runs (x86)
 Store process id (MIPs)

Also, store pids with cache to avoid flushing cache
on context switches

Hardware support
* Page table register
* Process id register

IELGENEL

Worst Internet security vulnerability found yet due systems
practices 101 that we learn in CS3410, lack of bounds checking!

It is necessary to have a privileged mode (aka kernel mode) where
a trusted mediator, the Operating System (OS), provides isolation
between programs, protects shared resources, and provides safe
control transfer.

Exceptions are any unexpected change in control flow.
Precise exceptions are necessary to identify the exceptional
instructional, cause of exception, and where to start to
continue execution.

We need help of both hardware and software (e.g. OS) to
resolve exceptions. Finally, we need some type of
protected mode to prevent programs from modifying OS or
other programes.

Next Goal

What is the difference between traps, exceptions,
interrupts, and system calls?

Recap: Traps
- Map kernel into every process using supervisor PTEs
- Switch to kernel mode on trap, user mode on return

Trap: Any kind of a control transfer to the OS

Syscall: Synchronous, program-to-kernel transfer

* user does caller-saves, invokes kernel via syscall

* kernel handles request, puts result in vO, and returns
Exception: Synchronous, program-to-kernel transfer

* user div/load/store/... faults, CPU invokes kernel

* kernel saves everything, handles fault, restores, and returns
Interrupt: Aysnchronous, device-initiated transfer

* e.g. Network packet arrived, keyboard event, timer ticks
* kernel saves everything, handles event, restores, and returns

Interrupts & Exceptions

On an interrupt or exception
* CPU saves PC of exception instruction (EPC)
» CPU Saves cause of the interrupt/privilege (Cause register
e Switches the sp to the kernel stack
* Saves the old (user) SP value
* Saves the old (user) PC value
e Saves the old privilege mode
* Sets the new privilege mode to 1
* Sets the new PC to the kernel interrupt/exception handler

Interrupts & Exceptions
Kernel interrupt/exception handler handles the
event
* Saves all registers
* Examines the cause
* Performs operation required
e Restores all registers

* Performs a “return from interrupt” instruction, which
restores the privilege mode, SP and PC

Example: Clock Interrupt

Example: Clock Interrupt*

* Every N cycles, CPU causes exception with Cause =
CLOCK_TICK

* OS canselect N to get e.g. 1000 TICKs per second
ktext 0x8000 0180
(step 1) save *everything* but Sk0, Skl to 0xBO000000
(step 2) set up a usable OS context
(step 3) examine Cause register, take action
if (Cause == PAGE_FAULT) handle_pfault(BadVaddr)
else if (Cause == SYSCALL) dispatch_syscall(SvO)
else if (Cause == CLOCK_TICK) schedule()
(step 4) restore registers and return to where program left off

* not the CPU clock, but a programmable timer clock

Scheduler

struct regs context[];
int ptbr[];
schedule() {
1 = current _process;
j = pick_some process();
if (1 1= 73) A
current_process = j;
memcpy(context[i], ©xB000000O);
memcpy (0xBOO0OOOOO, context[j]);
asm(“mtco Context, ptbr[j]”);

Syscall vs. Interrupt

Syscall vs. Exceptions vs. Interrupts

Same mechanisms, but...
Syscall saves and restores much less state
Others save and restore full processor state

Interrupt arrival is unrelated to user code

IELGENEL

It is necessary to have a privileged mode (aka kernel mode) where
a trusted mediator, the Operating System (OS), provides isolation
between programs, protects shared resources, and provides safe
control transfer.

Exceptions are any unexpected change in control flow. Precise
exceptions are necessary to identify the exceptional instructional,
cause of exception, and where to start to continue execution.

We need help of both hardware and software (e.g. OS) to resolve
exceptions. Finally, we need some type of protected mode to
prevent programs from modifying OS or other programs.

To handle any exception or interrupt, OS analyzes the Cause
register to vector into the appropriate exception handler. The OS
kernel then handles the exception, and returns control to the
same process, killing the current process, or possibly scheduling
another process.

Summary
Trap

* Any kind of a control transfer to the OS
Syscall

* Synchronous, program-initiated control transfer from
user to the OS to obtain service from the OS

* e.g. SYSCALL
Exception

* Synchronous, program-initiated control transfer from
user to the OS in response to an exceptional event

* e.g. Divide by zero, TLB miss, Page fault
Interrupt

* Asynchronous, device-initiated control transfer from
user to the OS

* e.g. Network packet, I/0 complete

Administrivia
Lab3 due tomorrow, Wednesday
 Take Home Lab, finish within day or two of your Lab

e Work alone

HW?2 Help Session on tonight, Tuesday, April 15, at
7:30pm in Kimball B11 and Thursday, April 17,

Administrivia
Next five weeks

* Week 11 (Apr 15): Proj3 release, Lab3 due Wed, HW2
due Sat

 Week 12 (Apr 22): Lab4 release and Proj3 due Fri
* Week 13 (Apr 29): Proj4 release, Lab4 due Tue, Prelim?2

* Week 14 (May 6): Proj3 tournament Mon, Proj4 design
doc due

Final Project for class
* Week 15 (May 13): Proj4 due Wed

