Caches 3

CS 3410, Spring 2014
Computer Science
Cornell University

See P&H Chapter: 5.1-5.4, 5.8, 5.15

Overview

Cache Organization

Writing to caches: policies, performance

Cache performance

Compromise

Set-associative cache

Like a direct-mapped cache

* |ndex into a location
* Fast

Like a fully-associative cache

e Can store multiple entries
— decreases conflicts

e Search in each element
n-way set assoc means n possible locations

3-Way Set Associative Cache (Reading)

Tag Index Offset

Basic Cache Organization

Q: How to decide block size?
A: Try it and see

But: depends on cache size, workload,
associativity, ...

Experimental approach!

Experimental Results

10%
4K
[\
o v
rate \ /¢\
\\ @
O
) - - —O— — o 64K
0% . —4 A — 256K
16 32 64 128 256

Block size

Tradeoffs

For a given total cache size,

larger block sizes mean....
* fewer lines
* so fewer tags, less overhead

* and fewer cold misses (within-block “prefetching”)

But also...

* fewer blocks available (for scattered accesses!)
* so more conflicts

* and larger miss penalty (time to fetch block)

Associativity

1 KiB
2 KiB
4 KiB
—8KB
16 KiB T ——

i 64KB . 128KiB

. »ar " »

9
O
—
)
R
=

T 1 1

One-way Two-way Four-way Eight-way
Associativity

Other Designs

Multilevel caches

Next Goal

What about writes?

What happens when the CPU writes to a register
and calls a store instruction?!

What about Stores?

Where should you write the result of a store?

* If that memory location is in the cache?
— Send it to the cache
— Should we also send it to memory right away?
(write-through policy)
— Wait until we evict the block (write-back policy)
 Ifitis notin the cache?

— Allocate the line (put it in the cache)?

(write allocate policy)
— Write it directly to memory without allocation?
(no write allocate policy)

Cache Write Policies

Q: How to write data?

addr

i Cache i
— SRAM —
data

If data is already in the cache...
No-Write
writes invalidate the cache and go directly to memory

Write-Through

writes go to main memory and cache

Write-Back

CPU writes only to cache
cache writes to main memory later (when block is evicted)

Write Allocation Policies

Q: How to write data?

addr
i Cache

— SRAM
data

ﬁ
ﬁ

If data is not in the cache...
Write-Allocate

allocate a cache line for new data (and maybe write-through)
No-Write-Allocate

ignore cache, just go to main memory

Next Goal

How does a write-through cache work?
Assume write-allocate

Handling Stores (Write-Through)

Using byte addresses in this example! Addr Bus =5 bits

Processor Memory

Cach
Fully Assoceiative Cache
2 cache lines
2 word block

4 bit tag field
1 bit block offset field

V tag data
0

78
29

Assume write-allocate
policy

OO NOOULDE WNERERO

(WY
(=)

(WY
[

(WY
N

Misses: 0

(WY
W

Hits: 0

(WY
S

(WY
U

Write-Through (REF 1)

Processor

V tag data

0

Misses: 0

Hits: 0

0
|
2
3
4
5
()
7
8
9

S N T S S T
ubH WNERO

Write-Through (REF 1)

Processor

Addr: 0000 6/0

Z %
V fag data

110000 78
29

OO NOOULDE WNERERO

(WY
(=)

(WY
[

(WY
N

Misses: 1

(WY
W

Hits: 0

(WY
S

(WY
U

Write-Through (REF 2)

Processor

V tag data

110000 78
29

OO NOOULDE WNERERO

(WY
(=)

(WY
[

(WY
N

Misses: 1

(WY
W

Hits: 0

(WY
S

(WY
U

Write-Through (REF 2)

Processor

Cache

Addr: 0011

V t3g

%

data

1 |ogoo

’
1]oo11b

Misses:

Hits:

78
29
E |

2
0

O OO NOODULLDE WN RO

S N T S S T
ubH WNERO

Write-Through (REF 3)

Processor

1]
7]
m) SB $2—>M[O]
SB $1—=M[5]

LB $2 < M[10]

5]

10]

M
M

V tag data

110000 78

29

Misses: 2

Hits: 0

OO NOOULDE WNERERO

S N T S S T
ubH WNERO

Write-Through (REF 3)

Processor

Addr: 0000

LB S1<—M[1]m
LB $2<M[7 1w
mm) SB $2—>M[0]y
SBS1—-M[5]
LB $2 < M[10]
SBS1—-M[5]
SB $1— M[10]

O OO NOOULLDE WN

(WY
(=)

(WY
[

S0

s1 Misses: 2

g; Hits: @

(WY
N

(WY
W

(WY
S

(WY
U

Write-Through (REF 4)

Processor Cache

Adci:: 0010
/

\'} t% data

1 173
29

Misses: 2

Hits: 1

Write-Through (REF 4)

Processor

V tag data

1 173
29

Misses: 3

Hits: 1

Write-Through (REF 5)

Processor Cache

Addr: 0101

V tag data

1 173
29

O NO UV S WNERO

SB $1—M[10]

SO
s1 Misses: 3

$3 Hits: 1

Write-Through (REF 5)

Processor

SB $1—M[10]

V tag data

1

0101

0010

S0

s1

S3

Misses: 4

Hits: 1

OO NOOULDE WNERERO

S N T S S T
ubH WNERO

Write-Through (REF 6)

Processor Cache

Addr: 0010

LB §1< M[1 V tgdg data

]
LB $2<M[7]
B $2—>M[0]
SB $1—>M[5]

]
]
]

M

M 1 |ofo1
H v
M

M

0010

LB $2 < M[10
SB S1—M[5
SB $1— M[10

OO NOOULDE WNERERO

(WY
(=)

(WY
[

S0

s1 29 Misses: 4
s2 [INSa]

$3 Hits: 1

(WY
N

(WY
W

(WY
S

(WY
U

Write-Through (REF 6)

Processor

S0
s1

52 (IS

S3

V tag data

Misses: 4

Hits: 2

O OO NO\LT D WN RO

S N T S S T
ubH WNERO

Write-Through (REF 7)

Processor

S0

s1

52 (IS

S3

29

Addr: 0101

\' Zg data

110101

0010

Misses: 4

Hits: 2

OO NOOULDE WNERERO

S N T S S T
ubH WNERO

Write-Through (REF 7)

Processor

V tag data

S0

s1 Misses: 4
s2 [INSa]

$3 Hits: 3

How Many Memory References?

Write-through performance

Each miss (read or write) reads a block from mem
* 4 misses =2 8 mem reads

Each store writes an item to mem

e 4 mem writes

Evictions don’t need to write to mem
* no need for dirty bit

Write-Through (REF 8,9)

Processor

IBS$1<—M[1] M
LB $2<M[7 1M
SB$2—-M[0] H
SB$1—->M[5]m
LB $2 < M[10] v
SB$1—-M[5] H
SR $1— M[10] H
SB $1—-M[5]
mm) SB $1— M[10]

S0
s1
$2
S3

V tag data

Misses: 4

Hits: 3

Memory

173

29

© O 0O NO\UT H W IN = O

Write-Through (REF 8,9)

Processor

LB $1 < M[1
LB $2< M[7
SB $2—> M[0
SB $1—>M[5
LB $2 < M[10
SB $1— M[5
SB $1 — M[10
SB $1—> M[5
mm) SB $1— M[10

]
]
]
]
]
]
]
]
]

M
M
H
M
M
H
H
H
H

S0

s1
$2
S3

V tag data

Misses: 4

Hits:)

Memory

173

29

© O 0O NO\UT H W IN = O

Summary: Write Through

Write-through policy with write allocate
Cache miss: read entire block from memory
Write: write only updated item to memory
Eviction: no need to write to memory

Write-Through vs. Write-Back

Can we also design the cache NOT to write all
stores immediately to memory?

 Keep the most current copy in cache, and update
memory when that data is evicted (write-back

policy)
* Do we need to write-back all evicted lines?
— No, only blocks that have been stored into (written)

Write-Back Meta-Data

V D Tag Byte 1 Byte 2 ... Byte N

V =1 means the line has valid data

D = 1 means the bytes are newer than main memory

When allocating line:
 SetV=1,D=0, fill m=Tag and Data
When writing line:
* SetD=1
When evicting line:
e IfD=0:justsetV=0
 If D=1: write-back Data, thensetD=0,V=0

Write-back Example

Example: How does a write-back cache work?
Assume write-allocate

Handling Stores (Write-Back)

Using byte addresses in this example! Addr Bus =5 bits

Processor Cache Memory
Fully Associative Cache

. 2 cache lines
Assume write-allocate | ; word block

policy

78
29

3 bit tag field
1 bit block offset field

V d tag data
0

OO NOOULDE WNERERO

(WY
(=)

(WY
[

(WY
N

Misses: 0

(WY
W

Hits: 0

(WY
S

(WY
U

Write-Back (REF 1)

Processor

) (B $1 < M| Vd tag data

1]
LB $2< M[7]
SB $2—>M[0]
SB $S1—-M[5]
0]
5]

0

LB $2 < M[1

10]

OO NOOULDE WNERERO

(WY
(=)

(WY
[

(WY
N

Misses: 0

(WY
W

Hits: 0

(WY
S

(WY
U

Write-Back (REF 1)

Processor

Addr: 0000 6/0

./ |
Vd tag data

110]0000 78
29

OO NOOULDE WNERERO

(WY
(=)

(WY
[

(WY
N

Misses: 1

(WY
W

Hits: 0

(WY
S

(WY
U

Write-Back (REF 1)

Processor

Vd tag data

110]0000 78
29

OO NOOULDE WNERERO

(WY
(=)

(WY
[

(WY
N

Misses: 1

(WY
W

Hits: 0

(WY
S

(WY
U

Write-Back (REF 2)

Processor

Vd tag data

110]0000 78
29

OO NOOULDE WNERERO

(WY
(=)

(WY
[

(WY
N

Misses: 1

(WY
W

Hits: 0

(WY
S

(WY
U

Write-Back (REF 2)

Processor Cache

Addr: 0011

%

vVd t data

0|ogoo| 78
v 29

OO NOOULDE WNERERO

(WY
(=)

(WY
[

(WY
N

Misses: 2

(WY
W

Hits: 0

(WY
S

(WY
U

Write-Back (REF 3)

Processor

Vd tag data

110]0000 78
29

OO NOOULDE WNERERO

(WY
(=)

(WY
[

(WY
N

Misses: 2

(WY
W

Hits: 0

(WY
S

(WY
U

Write-Back (REF 3)

Processor

Addr: 0000

V. d tag data

BN o 1 looool, 173
SB $1 — M[

OO NOOULDE WNERERO

(WY
(=)

(WY
[

(WY
N

Misses: 2

(WY
W

Hits: 1

(WY
S

(WY
U

Write-Back (REF 4)

Processor

M Vd tag data
M 1]1]0000 173
H

IB $1<M[1]
LB $2<— M[7]
SB $2—M[0]
SB$1—M[5]
qlB $2 «— M[10] 0011
SB$1—-M[5]
SB $1 — M[10]

29

S0

s1 29 Misses: 2
s2 173 |

$3 Hits: 1

Write-Back (REF 4)

Processor Cache

Addr: 0010

vVd t data

173
29

Misses: 3

Hits: 1

Write-Back (REF 5)

Processor Cache

Addr: 0101

Vd I/g data

1] Joooo] 273
29

110010

OO NOOULDE WNERERO

SB $1—M[10]

(WY
(=)

(WY
[

S0

s1 Misses: 3

(WY
N

(WY
W

$3 Hits: 1

(WY
S

(WY
U

Write-Back (REF 5)

Processor

Cache

Addr: 0101

Vd tag data

1]1 173
29

Misses: 3

Hits: 1

Write-Back (REF 5)

Processor Cache

Addr: 0101

SB $1—M[5
mm) LB $2 < M[10]

SB $1—-M[5]

SB $1— M[10]

O NO UV S WNERO

S0

s1 29 Misses: 4
s2 [INSa]

$3 Hits: 1

Write-Back (REF 6)

Processor Cache

Addr: 0010

Vd tag data
1[0]0101

IBS1<M[1]m
IBS2<M[7 Im
SB$2—-M[0] 4
Im
M

SB $1— M[5

LB $2 < M[10]
) s $1—>M[5]

SB $1 — M[10]

0010

OO NOOULDE WNERERO

(WY
(=)

(WY
[

S0

s1 29 Misses: 4
s2 [INSa]

$3 Hits: 1

(WY
N

(WY
W

(WY
S

(WY
U

Write-Back (REF 6)

Processor

Vd tag data
1[0]0101

IBS1<M[1]
LBS2<M[7]
SB$2—-M[0] H
SBS1—=M[5]1m
Im
l1H
]

17T
1 /10010

LB $2 «— M[10

=) sg $1—M[5
SB $1 — M[10

OO NOOULDE WNERERO

(WY
(=)

(WY
[

SO
s1 Misses: 4

S2
$3 Hits: 2

(WY
N

(WY
W

(WY
S

(WY
U

Write-Back (REF 7)

Processor

Vd tag data
1[0]0101

IBS1<M[1]
LBS2<M[7]
SB$2—M[0] H
SBS1—=M[5]m
Im
l1H
]

0010

LB $2 «— M[10

=) sg $1—M[5
SB $1 — M[10

OO NOOULDE WNERERO

(WY
(=)

(WY
[

S0

s1 29 Misses: 4
s2 [INSa]

$3 Hits: 2

(WY
N

(WY
W

(WY
S

(WY
U

Write-Back (REF 7)

Processor

LB $1<—M[1 vd tag data

15 £ =LAl 1|1 o101

SB $2 — M[0

SB $1—M[5

LB $2 < M[10 10

SB $1—M[5
=) sB 51— M[10

OO NOOULDE WNERERO

(WY
(=)

(WY
[

SO
s1 Misses: 4

S2
43 Hits: 3

(WY
N

(WY
W

(WY
S

(WY
U

How Many Memory References?

Write-back performance

Each miss (read or write) reads a block from mem
* 4 misses =2 8 mem reads

Some evictions write a block to mem
* 1 dirty eviction 2 2 mem writes
* (+ 2 dirty evictions later 2 +4 mem writes)

Write-Back (REF 8,9)

Processor

Vd tag data
1[1]0101

0010

OO NOOULDE WNERERO

(WY
(=)

(WY
[

(WY
N

Misses: 4

(WY
W

Hits: 3

(WY
S

(WY
U

Write-Back (REF 8,9)

Processor

Vd tag data
1[1]0101

0010

OO NOOULDE WNERERO

M
M
H
M
M
H
H
H
H

(WY
(=)

(WY
[

(WY
N

Misses: 4

(WY
W

Hits:)

(WY
S

(WY
U

How Many Memory References?

Write-back performance

Each miss (read or write) reads a block from mem
* 4 misses =2 8 mem reads

Some evictions write a block to mem
* 1 dirty eviction 2 2 mem writes
* (+ 2 dirty evictions later 2 +4 mem writes)

By comparison write-through was

* Reads: eight words
* Writes: 4/6/8/10/12/... etc words

So is write back just better?

What are other performance tradeoffs between
write-through and write-back?

How can we further reduce penalty for cost of
writes to memory?

Performance Tradeoffs

Q: Hit time: write-through vs. write-back?
A: Write-through slower on writes

Q: Miss penalty: write-through vs. write-back?

A: Write-back slower on evictions

Write Buffering

Q: Writes to main memory are slow!

A: Use a write-back buffer
* A small queue holding dirty lines
* Add to end upon eviction

* Remove from front upon completion

Q: When does it help?

A: short bursts of writes (but not sustained writes)

A: fast eviction reduces miss penalty

Write-through vs. Write-back

Write-through is slower
e But simpler (memory always consistent)

Write-back is almost always faster
* write-back buffer hides large eviction cost

* But what about multiple cores with separate caches
but sharing memory?

Write-back requires a cache coherency protocol
* |Inconsistent views of memory
* Need to “snoop” in each other’s caches
* Extremely complex protocols, very hard to get right

Cache-coherency
Q: Multiple readers and writers?

A: Potentially inconsistent views of memory

bepu || cpu || cpu | cpu. |
]

2% T T e e
]

A 2 i 2

— >
net | Ah Miem _disk_

—

Cache coherency protocol
snoop on other CPU’s cache activity
Invalidate cache line when other CPU writes
Flush write-back caches before other CPU reads
Or the reverse: Before writing/reading...
Extremely complex protocols, very hard to get right

Summary: Write Through

Write-through policy with write allocate
e Cache miss: read entire block from memory
* Write: write only updated item to memory
* Eviction: no need to write to memory

Write-back policy with write allocate

 Cache miss: read entire block from memory
— But may need to write dirty cacheline first
wA\rite: nothing to memory

* Eviction: have to write to memory, entire cacheline
because don’t know what is dirty (only 1 dirty bit)

Next Goal

Performance: What is the average memory access
time (AMAT) for a cache?

AMAT = %hit x hit time + % miss x miss time

Cache Performance Example

Average Memory Access Time (AMAT)

Cache Performance (very simplified):
L1 (SRAM): 512 x 64 byte cache lines, direct mapped
Data cost: 3 cvcle per word access
Lookup cost: 2 cycle
Mem (DRAM)?)4GB

Data cost: 50 cycle for first word, plus 3 cycles per
subsequent word

16 words (i.e. 64 / 4 = 16)

AMAT = %hit x hit time + % miss X miss time

Hit time =5 cycles

Miss time = hit time + 50 (first word) + 15 x 3 (words)
= 10Q)¢eycles

If %hit = 90%, then

AMAT =.9x5+.1x100 = 14.5 cycles

Cache Performance Example

Average Memory Access Time (AMAT)

Cache Performance (very simplified):
L1 (SRAM): 512 x 64 byte cache lines, direct mapped
Data cost: 3 cycle per word access
Lookup cost: 2 cycle :
1P Y 16 words (i.e. 64 / 4 = 16)
Mem (DRAM): 4GB

Data cost: 50 cycle for first word, plus 3 cycles per
subsequent word

Multi Level Caching

Cache Performance (very simplified):
L1 (SRAM): 512 x 64 byte cache lines, direct mapped
Hit time: 5 cycles
L2 cache: bigger
Hit time = 20 cycles
Mem (DRAM): 4GB
Hit rate: 90% in L1, 90% in L2

AMAT =/56nit xhit time + % miss x_miiss time
AMAT/F.9x54/.1(.9x20+.1xX120)=4.5+.1(18 +12)/=7.5

Often: L1 fast and direct manped, L2 bigger and higher
associativity

Performance Summary

Average memory access time (AMAT)
depends on cache architecture and size
access time for hit,

miss penalty, miss rate

Cache design a very complex problem:

* Cache size, block size (aka line size)
Number of ways of set-associativity (1, N, =)
Eviction policy
Number of levels of caching, parameters for each
Separate I-cache from D-cache, or Unified cache
Prefetching policies / instructions
Write policy

Cache Conscious Programming
// H=12, W = 10 E B -

int A[H][W];

for(x=0; X < W; X++)

for(y=0; y < H; y++)

sum += A[y][x];

10
11
Every access is a cache niissfho

(unless entire matrix can fit in cache)

Cache Conscious Programming

// H =12, W = 10
int A[H][W];

for(y=0; y < H; y++)
for(x=0; x < W; Xx++)
sum += A[y][x];

Block size =4 =
Block size = 8 2 87.5% hit rate
Block size = 16 =2 93.75% hit rate

|
Ll\.'l'l'

5

§

7

+ 9 [10]

I//Arjil_';

And you can easily prefetch to warm the cache

By the end of the cache lectures...

MacBook Pro Vodel Name: MacBook Pro

Retina, Mid 2012 Model Identifier: MacBookPro10,1
' Processor Name: Intel Core i7

Processor Speed: 2.7 GHz
Processor 2.7 GHz Intel Core i7 Number of Processors: 1

Total Number of Cores: 4
Memory 16 GB 1600 MHz DDR3 L2 Cache (per Core): 256 KB

L3 Cache: 8 MB g~——
Graphics NVIDIA GeForce GT 650M 1024 MB Memory: 16 GB

Boot ROM Version: MBP101.00EE.B0O2
Serial Number C02J70TTDKQ5 SMC Version (system): 2.3f36

Serial Number (system): C02J70TTDKQ5
Software OS X 10.9.2 (13C64) Hardware UUID: F588E08C-60BF-5B35-A087-07714C2B2D11

w 32 KB instructio cache (3 clocks) and 256 KB L2 cache (8 clocks) per core.
» Sitared L3 cache includes the processor graphics (LGA 1155).

s 64-byte cache line size.

el

Core Core Core Core Core Core Core Core
L(ONL.5 L(0) 1.5K L(0) 1.5K L(0) 1.5k || L(0) 1.5K L(0) 1.5k | L(0)1.5K L(0) 1.5K

UK uops uops uops uops uops uops uops
oM o© o m m m oM =
R BRI BRI IR R
o 2w 216 2 &8 21 208 ofs 2
ol = 2|l = 2|= 2ol =2|=12aofl= o= &
Sl 2 2| 2 2|2 2 2 2|3 22 S92 S
L(2) L(2) L(2) L(2) L(2) L(2) L(2) L(2)
256 KB 256 KB 256 KB 256 KB 256 KB 256 KB 256 KB 256 KB

_ ast Level (LLC) Cache or L3 Cache Ring
Ring : Station
System Integrated Quick Path
Agent Memory Interconnect
Controller (QPI) Agent

2PCle3 x16 Four DDR3 Each link 16 GB/s in
DMi2 1 PCle3 x8 channels 51.2 GB/s each direction
Figure 1. Schematic diagram of a Sandy Bridge processor.

Summary

Memory performance matters!
e often more than CPU performance
* ... because it is the bottleneck, and not improving much
* ... because most programs move a LOT of data
Design space is huge
* Gambling against program behavior

e Cuts across all layers:
users = programs = os = hardware

Multi-core / Multi-Processor is complicated
* Inconsistent views of memory

e Extremely complex protocols, very hard to get right

< February 2014

Sunday

Feb 23

36° Lo 17

42° Lo 23°
23

44° Lo 25°
30

Clouds giving way
to some sun

45° 023

Hist. Avg.
48° Lo 28°

View:

Monday

36° Lo 18°

40° Lo 21°
17

42° 1o 23°
24

45° Lo 26°
31

Partly sunny and
not as cool

580 Lo 37°

Hist. Avg.
48° Lo 28°

=B

Tuesday

36° Lo 18°

40° Lo 21°
18

42° Lo 24
25

45° Lo 26°
Apr1

Mainly cloudy and
breezy

54° ;20

Hist. Avg.
49° Lo 29

pring is here!

March 2014
Wednesday Thursday Friday
36° Lo 18° 36° Lo 18° 37° Lo 18°
5 6 7
38° Lo 20°
12 13 14
D¢ 0 4 9
40° Lo 22° 41° Lo 22° 41° Lo 22°
19 20 21

43° Lo 24

46° Lo 27

Clouds and sun

47° o3

Hist. Avg.
49° Lo 29°

44° 10 25°
28

43° Lo 24°

Turning cloudy;

not as cold Rain tapering off
o (-]
43°,310 52°.20
Hist. Avg. Hist. Avg.
46° Lo 27 47° Lo 27
3 4
Colder with

afternoon showers

44° ;30

Hist. Avg.
50° Lo 30°

Mostly cloudy

51°, 4

Hist. Avg.
50° Lo 30°

April 2014 >

Saturday

Mar 1

37° Lo 18°
8

39° Lo 20
15

N

41° Lo 22°
22

44° 10 25°
29

Rain possible in
the p.m.

430 Lo 22°

Hist. Avg.
47° Lo 28°

A little afternoon
rain

42° 25

Hist. Avg.
50° Lo 30°

< March 2014

Sunday

Mar 30

Clouds giving way
to some sun

45° 23

Hist. Avg.
48° Lo 28°
6

Cloudy

46° . 3

Hist. Avg.
51° 0 31°
13

A little rain in the
morning

62° a1

Hist. Avg.
54° Lo 33
20

Partial sunshine

530 Lo 32°

Hist. Avg.
58° Lo 36°
27

Rain

55°% 44

Hist. Avg.
61° Lo 38°

View: =

Monday
31

Partly sunny and
not as cool

58° .37

Hist. Avg.
48° Lo 28°

Cloudy with a
shower in spots

48° o a0
Hist. Avg.
52° Lo 31°
14

Cloudy with a little
rain

61°,4r

Hist. Avg.
55° Lo 34
21

Cloudy and
warmer

63°L,4z

Hist. Avg.
58° Lo 36°
28

Low clouds

560 Lo 39°

Hist. Avg.
61° Lo 38°

Tuesday

Apr1

Mainly cloudy and
breezy

54‘<> Lo 29°

Hist. Avg.
49° Lo 29°
8

A touch of
afternoon rain

46° . ax
Hist. Avg.
52° Lo 32
15

Increasing
cloudiness

63°, 4

Hist. Avg.
55° Lo 34
22

Rain becoming
steadier

65° Lo 42°

Hist. Avg.
59° Lo 36°
29

Partial sunshine

57°.3a

Hist. Avg.
62° Lo 38°

April

2014

Wednesday

Clouds and sun

47° 310

Hist. Avg.
49° Lo 29°
9

Clouds, a shower

520 Lo 44°
Hist. Avg.
52° 1o 32

16

An afternoon
shower

63° L ar

Hist. Avg.
56° Lo 3¢°
23

Clouds giving way
to some sun

63° L3¢

Hist. Avg.
59° Lo 36°
30

Partial sunshine

57°u3s

Hist. Avg.
62° Lo 38°

Thursday

Mostly cloudy

51°Lo42°

Hist. Avg.
50° Lo 30°
10

Periods of rain

4'8o Lo 37°

Hist. Avg.
53° Lo 32
17

Overcast

63°L4

Hist. Avg.
56° Lo 34°
24

Mostly cloudy, a
little rain

57°3z

Hist. Avg.
60° Lo 37

May 1

Mainly cloudy

57° 36

Hist. Avg.
62° Lo 39

Friday

Colder with
afternoon showers

o
44 Lo 30°
Hist. Avg.
50° Lo 30°

11

Warmer with a few
showers

59,3y

Hist. Avg.
5310802
18

Rain

57° a0

Hist. Avg.
57° Lo 35
25

Sunny

580 Lo 33°

Hist. Avg.
60° Lo 37

Cloudy with a
shower

58° Lo 36°

Hist. Avg.
63° Lo 39°

May 2(

Saturda

A little after
rain

42°,
Hist. Avg

50° Lo :

Sunshine i
some clou

600 Lo
Hist. Avg

54° 1oz

A little rain i
morning

52°,
Hist. Avg

SlaloE

Sun and cl¢

60°
Lo
Hist. Avg

60° Lo

Times of cl¢
and sur

58°
Lo
Hist. Avg

63° Lo

