Calling Conventions

Prof. Kavita Bala and Prof. Hakim Weatherspoon
CS 3410, Spring 2014
Computer Science
Cornell University

See P&H 2.8 and 2.12, and A.5-6

Goals for Today

Review: Calling Conventions

call a routine (i.e. transfer control to procedure)
pass arguments

* fixed length, variable length, recursively

return to the caller

e Putting results in a place where caller can find them

Manage register

Today

More on Calling Conventions

globals vs local accessible data

callee vs caller saved registers

Calling Convention examples and debugging

Goals for Today

Review: Calling Conventions
e call aroutine (i.e. transfer control to procedure)
* pass arguments

* fixed length, variable length, recursively

 return to the caller

e Putting results in a place where caller can find them

* Manage register

Today

* More on Calling Conventions

* globals vs local accessible data

* callee vs caller saved registers

e Calling Convention examples and debugging

There is no one true MIPS calling convention.
lecture = book !=gcc I=spim |=web

MIPS Register Recap

Return address: S31 (ra)

Stack pointer: $29 (sp)

Frame pointer: $30 (fp)

First four arguments: $4-S7 (a0-a3)

Return result: $2-S3 (vO-v1)

Callee-save free regs: $16-523 (s0-s7)
Caller-save free regs: $8-515,524,525 (t0-t9)
Reserved: $26, S27

Global pointer: $28 (gp)

Assembler temporary: S1 (at)

MIPS Register Conventions

r0 |Szero zero rl6| SsO

rl | Sat | assemblertemp || r17| $sl

r2 | SvO function ri8| $s2

3| $v1 | returnvalues |/r19] $s3 saved

r4 | $30 r20| Ss4 (callee save)
r5 | Sal function r21) $s5

6 | $a2 arguments r22| Ss6

YARTE r23| Ss7

r8 | $t0 r24 | St8 more temps
9 | $t1 r25| St9 (caller save)
r10| $t2 r26| SkO reserved for
ril] $t3 temps r27 | Ski kernel

r12| St4 (caller save) r28 | Sgp | global data pointer
r13| $t5 r29| Ssp stack pointer
r14| $t6 r30| Sfp frame pointer
r15| $t7 r31| Sra return address

Recap: Conventions so far
e first four arg words passed in Sa0, Sal, Sa2, Sa3

* remaining arg words passed in parent’s stack frame

e return value (if any) in SvO, Sv1 (Bottom of
e stack frame at Ssp current
— contains Sra (clobbered on JAL to sub-functjons) \stack frame
— contains Sfp Sfp - saved ra
— contains local vars (possibly saved fp
clobbered by sub-functions) saved regs
— contains extra arguments to sub-functions (SsO ... Ss7)
(i.e. argument “spilling)
— contains space for first 4 arguments locals
to sub-functions

* callee save regs are preserved Top of
' . the stack
* caller save regs are no

| $S¢p N args
* Global data accessed via Sgp |

outgoing

Globals and Locals

Global variables in data segment
* Exist for all time, accessible to all routines

Dynamic variables in heap segment
* Exist between malloc() and free()

Local variables in stack frame
 Exist solely for the duration of the stack frame

Dangling pointers into freed heap mem are bad

Dangling pointers into old stack frames are bad
* Clets you create these, Java does not
* int *foo() { int a; return &a; }

Anatom
OxFffffffc

0X80000000
Ox7FFFFfC

0x10000000

0x00400000
0X00000000

of an executing

system reserved

stack

l
T

dynamic data (heap)

program
top

static data

code (text) <

.data

text

system reserved

bottom

PC

Caller-saved vs. Callee-saved

Callee-save register:

* Assumes register not changed across procedure call

* Thus, callee must save the previous contents of the register on
procedure entry, restore just before procedure return

* E.g. Sra, Sfp, Ss0-s7
Caller-save register:
* Assumes that a caller can clobber contents of register

* Thus, caller must save the previous contents of the register
before proc call

e Caller, then, restores after the call
e E.g. Sa0-a3, Sv0-Svil, St0-St9

MIPS calling convention supports both

Caller-saved vs. Callee-saved

Caller-save: If necessary... (St0 .. St9)
* save before calling anything; restore after it returns

Callee-save: Always... (SsO .. Ss7)
* save before modifying; restore before returning

Caller-save registers are responsibility of the caller Save if want to
* Caller-save register values saved only if used after call/return| o after a call

* The callee function can use caller-saved registers

Callee-save register are the responsibility of the callee Save before use

* Values must be saved by callee before they can be used
e Caller can assume that these registers will be restored

Caller-saved vs. Callee-saved

Caller-save: If necessary... (St0 .. St9)

* save before calling anything; restore after it returns
Callee-save: Always... (SsO .. Ss7)

* save before modifying; restore before returning

MIPS (St0-5t9), x86 (eax, ecx, and edx) are caller-save...
e ... afunction can freely modify these registers

e ... but must assume that their contents have been destroyed if it in
turns calls a function.

MIPS (SsO - Ss7), x86 (ebx, esi, edi, ebp, esp) are callee-save

* A function may call another function and know that the callee-save
registers have not been modified

 However, if it modifies these registers itself, it must restore them to
their original values before returning.

Caller-saved vs. Callee-saved

Caller-save: If necessary... (St0 .. St9)

* save before calling anything; restore after it returns
Callee-save: Always... (SsO .. Ss7)

* save before modifying; restore before returning

A caller-save register must be saved and restored around
any call to a subroutine.

In contrast, for a callee-save register, a caller need do no
extra work at a call site (the callee saves and restores the
register if it is used).

Caller-saved vs. Callee-saved

Caller-save: If necessary... (St0 .. St9)
* save before calling anything; restore after it returns

Callee-save: Always... (SsO .. Ss7)
* save before modifying; restore before returning

CALLER SAVED: MIPS calls these temporary registers, St0-t9

* the calling routine saves the registers that it does not want a
called procedure to overwrite

* register values are NOT preserved across procedure calls
CALLEE SAVED: MIPS calls these saved registers, $s0-s8

* register values are preserved across procedure calls

* the called procedure saves register values in its Activation
Record (AR), uses the registers for local variables, restores
register values before it returns.

Caller-save: If necessary... (5t0 .. St9)

e save before calling anything; restore after it returns
Callee-save: Always... (SsO .. $Ss7)

* save before modifying; restore before returning

Registers St0-St9 are caller-saved registers
e ...that are used to hold temporary quantities
e ...that need not be preserved across calls
Registers $s0-s8 are callee-saved registers
e ...that hold long-lived values
e ...that should be preserved across calls

main:

sw $31,28(Ssp)
sw $30, 24(Ssp)
sw $17, 20(Ssp)
_SW 516, 16(Ssp)
addiu $S30, Ssp, 28

[use $16.;nd S17]

(Iw $31,28(Ssp) A

lw $30,24(Ssp)
lw $17, 20Ssp)
W S16, 16(Ssp)j
addiu Ssp,Ssp,32
jr$31

Callee-Save

Assume caller is using the registers
Callee must save on entry, restore on exit

Pays off if caller is actually using the
registers, else the save and restore are
wasted

Callee-Save

main: Assume caller is using the registers
(" cw 5ra,28' (Ss'p’)_ % Callee must save on entry, restore on exit

sw Sfp, 24(Ssp)
sw Ss1, 20(Ssp)

\SW 50, 16(55p) Pays off if caller is actually using the
addiu Sfp, Ssp, 28 .
registers, else the save and restore are
[use $sO and $s1] wasted

(Iw Sra,28(Ssp) A

lw Sfp,24(Ssp)
lw Ss1, 20Ssp)

lw Ss0, 16(Ssp)
\)

addiu Ssp,Ssp,32

jr Sra

main:
'[.l'Jse S8 & S9]

addiu Ssp,Ssp,-8
sw S9, 4(Ssp)
sw $8, 0(Ssp)

jal mult

lw S9, 4(Ssp)

lw S8, 0(Ssp)
addiu Ssp,Ssp,8

.[.l.Jse S8 & S9]

Caller-Save

Assume the registers are free for the
taking, clobber them

But since other subroutines will do
the same, must protect values that
will be used later

By saving and restoring them before
and after subroutine invocations

Pays off if a routine makes few calls to
other routines with values that need
to be preserved

main:
'[.l'Jse St0 & St1]

addiu Ssp,Ssp,-8
sw St1, 4(Ssp)
sw St0, 0(Ssp)
jal mult

lw St1, 4(Ssp)
lw St0, 0(Ssp)
addiu Ssp,Ssp,8

.[.l.Jse St0 & St1]

Caller-Save

Assume the registers are free for the
taking, clobber them

But since other subroutines will do
the same, must protect values that
will be used later

By saving and restoring them before
and after subroutine invocations

Pays off if a routine makes few calls to
other routines with values that need
to be preserved

Recap: Conventions so far
e first four arg words passed in Sa0, Sal, Sa2, Sa3

* remaining arg words passed in parent’s stack frame

e return value (if any) in SvO, Sv1 (Bottom of
e stack frame at Ssp current
— contains Sra (clobbered on JAL to sub-functjons) \stack frame
— contains Sfp Sfp - saved ra
— contains local vars (possibly saved fp
clobbered by sub-functions) saved regs
— contains extra arguments to sub-functions (SsO ... Ss7)
(i.e. argument “spilling)
— contains space for first 4 arguments locals
to sub-functions

* callee save regs are preserved Top of
' . the stack
* caller save regs are no

| $S¢p N args
* Global data accessed via Sgp |

outgoing

Frame Layout on Stack

P saved ra
saved fp
saved regs
(SsO ... Ss7)

locals
outgoing
args

> X

ADDIU Ssp, Ssp, -32 # allocate frame
SW Sra, 28(Ssp) # save Sra

SW Sfp, 24(Ssp) # save old Sfp

SW Ss1, 20(Ssp) # save ...

SW Ss0, 16(Ssp) # save ...

ADDIU Sfp, Ssp, 28 # set new frame ptr

BODY

LW Ss0, 16(Ssp) # restore ...

LW Ss1, 20(Ssp) # restore ...

LW Sfp, 24(Ssp) # restore old Sfp
LW Sra, 28(Ssp) # restore Sra
ADDIU Ssp,Ssp, 32 # dealloc frame
JR Sra

Frame Layout on Stack

P saved ra
saved fp
blue
saved regs
il arguments

blue() {

}

pink(0I1I2I3I4I5);

Frame Layout on Stack

saved ra

saved fp

saved regs

arguments

saved ra

saved fp

saved regs

local variables

arguments

blue() {

}

pink(int g, int b, int ¢, intd, inte, intf){

¥

pink(0I1I2I3I4I5);

orange(10,11,12,13,14);

Frame Layout on Stack

saved ra blue() {
blue_ saved fp pink(0,1,2,3,4,5);
saved regs }
- arguments p|nk(|nt d, int b, int C, Int d, Int e, int f) {
saved ra Qrange(10,11,12,13,14);
saved fp }
pink__ saved regs orange(int @, int b, int ¢, int, d, inte) {
local variables char bUf[lOO],
arguments gets(buf); // read string, no check!
P saved ra }
oran saved fp
5 local variables <« bUf[lOO]

Activity #1: Calling Convention Example

int test(int a, int b) {
int tmp = (a&b)+(a|b);
int s = sum(tmp,1,2,3,4,5);
int u = sum(s,tmp,b,a,b,a);
return u + a + b;

Activity #2: Calling Convention Example:
Prologue, Epilogue

test:
allocate frame
save Sra
save old Sfp
callee save ...
callee save ...
set new frame ptr

restore ...

restore ...

restore old Sfp
restore Sra

dealloc frame

Next Goal

Can we optimize the assembly code at all?

Activity #3: Calling Convention Example

int test(int a, int b) {
int tmp = (a&b)+(alb);
int s = sum(tmp,1,2,3,4,5);
int u = sum(s,tmp,b,a,b,a);
return u + a + b;

}

How can we optimize
the assembly code?

Activity #3: Calling Convention Example:

Prologelet:e, Epilogue

allocate frame

save Sra

save old Sfp

callee save ...

callee save ...

set new frame ptr

restore ...

restore ...

restore old Sfp
restore Sra

dealloc frame

Minimum stack size for a standard function?

Minimum stack size for a standard function?

Sfp 2 saved ra
saved fp
saved regs

(SsO ... Ss7)

locals

outgoing

Ssp > args

Leaf Functions

Leaf function does not invoke any other functions
int f(int x, int y) { return (x+y); }

Optimizations? Sfp >| savedra
saved fp

saved regs

(SsO ... Ss7)

locals

outgoing

$sp > args

Anatom
OxFffffffc

0X80000000
Ox7FFFFfC

0x10000000

0x00400000
0X00000000

of an executing

system reserved

stack

l
T

dynamic data (heap)

program
top

static data

code (text) <

.data

text

system reserved

bottom

PC

Activity #4: Debugging

init(): 0x400000
printf(s, ...): 0x4002B4
vhorm(a,b): 0x40107C
main(a,b): 0x4010A0
pi: 0x10000000
strl: 0x10000004

What func is running?
Who called it?

Has it called anything?
Will it?

Args?

Stack depth?

Call trace?

CPU:
Spc=0x004003CO0
Ssp=0x7FFFFFAC
Sra=0x00401090

Ox7FFFFFBO

0x00000000

0x0040010c

Ox7FFFFFF4

0x00000000

0x00000000

0x00000000

0x00000000

0x004010c4

Ox7FFFFFDC

0x00000000

0x00000000

0x00000015

0x10000004

0x00401090

Administrivia

Upcoming agenda

PA1 due today
PA2 available and discussed during lab section this week
PA2 Work-in-Progress due Monday, March 17t

PA2 due Thursday, March 27t

HW?2 available next week, due before Prelim2 in April

Spring break: Saturday, March 29t to Sunday, April 6t

RecaP
* How to write and Debug a MIPS program using calling

convention
e first four arg words passed in Sa0, Sal, Sa2, Sa3
* remaining arg words passed in parent’s stack frame

* return value (if any) in $Sv0, Sv1

» stack frame at Ssp >fp 2 saved ra
— contains Sra (clobbered on JAL to sub-functiong) saved fp
— contains Sfp saved regs
— contains local vars (possibly (SsO ... Ss7)
clobbered by sub-functions)
— contains extra arguments to sub-functions locals
(i.e. argument “spilling)
— contains space for first 4 arguments
to sub-functions outgoing

* callee save regs are preserved $sp > args

* caller save regs are not

 Global data accessed via Sgp

