
Prof. Kavita Bala and Prof. Hakim Weatherspoon

CS 3410, Spring 2014

Computer Science

Cornell University

See P&H 2.8 and 2.12, and A.5-6

Review: Calling Conventions

• call a routine (i.e. transfer control to procedure)

• pass arguments
• fixed length, variable length, recursively

• return to the caller
• Putting results in a place where caller can find them

• Manage register

Today

• More on Calling Conventions

• globals vs local accessible data

• callee vs caller saved registers

• Calling Convention examples and debugging

Review: Calling Conventions

• call a routine (i.e. transfer control to procedure)

• pass arguments
• fixed length, variable length, recursively

• return to the caller
• Putting results in a place where caller can find them

• Manage register

Today

• More on Calling Conventions

• globals vs local accessible data

• callee vs caller saved registers

• Calling Convention examples and debugging

Warning: There is no one true MIPS calling convention.
lecture != book != gcc != spim != web

Return address: $31 (ra)

Stack pointer: $29 (sp)
Frame pointer: $30 (fp)
First four arguments: $4-$7 (a0-a3)
Return result: $2-$3 (v0-v1)
Callee-save free regs: $16-$23 (s0-s7)

Caller-save free regs: $8-$15,$24,$25 (t0-t9)
Reserved: $26, $27
Global pointer: $28 (gp)
Assembler temporary: $1 (at)

r0 $zero zero

r1 $at assembler temp

r2 $v0 function
return valuesr3 $v1

r4 $a0

function
arguments

r5 $a1

r6 $a2

r7 $a3

r8 $t0

temps
(caller save)

r9 $t1
r10 $t2
r11 $t3
r12 $t4
r13 $t5
r14 $t6
r15 $t7

r16 $s0

saved
(callee save)

r17 $s1

r18 $s2

r19 $s3

r20 $s4

r21 $s5

r22 $s6

r23 $s7

r24 $t8 more temps
(caller save)r25 $t9

r26 $k0 reserved for
kernelr27 $k1

r28 $gp global data pointer
r29 $sp stack pointer
r30 $fp frame pointer
r31 $ra return address

• first four arg words passed in $a0, $a1, $a2, $a3

• remaining arg words passed in parent’s stack frame

• return value (if any) in $v0, $v1

• stack frame at $sp
– contains $ra (clobbered on JAL to sub-functions)

– contains $fp

– contains local vars (possibly

clobbered by sub-functions)

– contains extra arguments to sub-functions

(i.e. argument “spilling)

– contains space for first 4 arguments

to sub-functions

• callee save regs are preserved

• caller save regs are not

• Global data accessed via $gp

saved ra
saved fp

saved regs
($s0 ... $s7)

locals

outgoing
args

$fp

$sp

Bottom of
current
stack frame

Top of
the stack

Global variables in data segment
• Exist for all time, accessible to all routines

Dynamic variables in heap segment
• Exist between malloc() and free()

Local variables in stack frame
• Exist solely for the duration of the stack frame

Dangling pointers into freed heap mem are bad

Dangling pointers into old stack frames are bad
• C lets you create these, Java does not

• int *foo() { int a; return &a; }

0xfffffffc

0x00000000

top

bottom

0x7ffffffc
0x80000000

0x10000000

0x00400000

system reserved

stack

system reserved

code (text)

static data

dynamic data (heap)

.data

.text
PC

Callee-save register:
• Assumes register not changed across procedure call
• Thus, callee must save the previous contents of the register on

procedure entry, restore just before procedure return
• E.g. $ra, $fp, $s0-s7

Caller-save register:
• Assumes that a caller can clobber contents of register
• Thus, caller must save the previous contents of the register

before proc call
• Caller, then, restores after the call
• E.g. $a0-a3, $v0-$v1, $t0-$t9

MIPS calling convention supports both

Caller-save: If necessary… ($t0 .. $t9)
• save before calling anything; restore after it returns

Callee-save: Always… ($s0 .. $s7)
• save before modifying; restore before returning

Caller-save registers are responsibility of the caller
• Caller-save register values saved only if used after call/return
• The callee function can use caller-saved registers

Callee-save register are the responsibility of the callee
• Values must be saved by callee before they can be used
• Caller can assume that these registers will be restored

Save if want to
use after a call

Save before use

Caller-save: If necessary… ($t0 .. $t9)
• save before calling anything; restore after it returns

Callee-save: Always… ($s0 .. $s7)
• save before modifying; restore before returning

MIPS ($t0-$t9), x86 (eax, ecx, and edx) are caller-save…
• … a function can freely modify these registers
• … but must assume that their contents have been destroyed if it in

turns calls a function.

MIPS ($s0 - $s7), x86 (ebx, esi, edi, ebp, esp) are callee-save
• A function may call another function and know that the callee-save

registers have not been modified
• However, if it modifies these registers itself, it must restore them to

their original values before returning.

Caller-save: If necessary… ($t0 .. $t9)
• save before calling anything; restore after it returns

Callee-save: Always… ($s0 .. $s7)
• save before modifying; restore before returning

A caller-save register must be saved and restored around
any call to a subroutine.
In contrast, for a callee-save register, a caller need do no
extra work at a call site (the callee saves and restores the
register if it is used).

Caller-save: If necessary… ($t0 .. $t9)
• save before calling anything; restore after it returns

Callee-save: Always… ($s0 .. $s7)
• save before modifying; restore before returning

CALLER SAVED: MIPS calls these temporary registers, $t0-t9

• the calling routine saves the registers that it does not want a
called procedure to overwrite

• register values are NOT preserved across procedure calls

CALLEE SAVED: MIPS calls these saved registers, $s0-s8

• register values are preserved across procedure calls

• the called procedure saves register values in its Activation
Record (AR), uses the registers for local variables, restores
register values before it returns.

Caller-save: If necessary… ($t0 .. $t9)
• save before calling anything; restore after it returns

Callee-save: Always… ($s0 .. $s7)
• save before modifying; restore before returning

Registers $t0-$t9 are caller-saved registers
• … that are used to hold temporary quantities

• … that need not be preserved across calls

Registers $s0-s8 are callee-saved registers
• … that hold long-lived values

• … that should be preserved across calls

Assume caller is using the registers

Callee must save on entry, restore on exit

Pays off if caller is actually using the
registers, else the save and restore are
wasted

main:
addiu $sp,$sp,-32
sw $31,28($sp)
sw $30, 24($sp)
sw $17, 20($sp)
sw $16, 16($sp)
addiu $30, $sp, 28

…
[use $16 and $17]

…
lw $31,28($sp)
lw $30,24($sp)
lw $17, 20$sp)
lw $16, 16($sp)
addiu $sp,$sp,32
jr $31

Assume caller is using the registers

Callee must save on entry, restore on exit

Pays off if caller is actually using the
registers, else the save and restore are
wasted

main:
addiu $sp,$sp,-32
sw $ra,28($sp)
sw $fp, 24($sp)
sw $s1, 20($sp)
sw $s0, 16($sp)
addiu $fp, $sp, 28

…
[use $s0 and $s1]

…
lw $ra,28($sp)
lw $fp,24($sp)
lw $s1, 20$sp)
lw $s0, 16($sp)
addiu $sp,$sp,32
jr $ra

Assume the registers are free for the
taking, clobber them
But since other subroutines will do
the same, must protect values that
will be used later
By saving and restoring them before
and after subroutine invocations

Pays off if a routine makes few calls to
other routines with values that need
to be preserved

main:
…
[use $8 & $9]
…
addiu $sp,$sp,-8
sw $9, 4($sp)
sw $8, 0($sp)
jal mult
lw $9, 4($sp)
lw $8, 0($sp)
addiu $sp,$sp,8
…
[use $8 & $9]

Assume the registers are free for the
taking, clobber them
But since other subroutines will do
the same, must protect values that
will be used later
By saving and restoring them before
and after subroutine invocations

Pays off if a routine makes few calls to
other routines with values that need
to be preserved

main:
…
[use $t0 & $t1]
…
addiu $sp,$sp,-8
sw $t1, 4($sp)
sw $t0, 0($sp)
jal mult
lw $t1, 4($sp)
lw $t0, 0($sp)
addiu $sp,$sp,8
…
[use $t0 & $t1]

• first four arg words passed in $a0, $a1, $a2, $a3

• remaining arg words passed in parent’s stack frame

• return value (if any) in $v0, $v1

• stack frame at $sp
– contains $ra (clobbered on JAL to sub-functions)

– contains $fp

– contains local vars (possibly

clobbered by sub-functions)

– contains extra arguments to sub-functions

(i.e. argument “spilling)

– contains space for first 4 arguments

to sub-functions

• callee save regs are preserved

• caller save regs are not

• Global data accessed via $gp

saved ra
saved fp

saved regs
($s0 ... $s7)

locals

outgoing
args

$fp

$sp

Bottom of
current
stack frame

Top of
the stack

saved ra
saved fp

saved regs
($s0 ... $s7)

locals

outgoing
args

fp

sp

ADDIU $sp, $sp, -32 # allocate frame
SW $ra, 28($sp) # save $ra
SW $fp, 24($sp) # save old $fp
SW $s1, 20($sp) # save ...
SW $s0, 16($sp) # save ...
ADDIU $fp, $sp, 28 # set new frame ptr
… ...
BODY
… ...
LW $s0, 16($sp) # restore …
LW $s1, 20($sp) # restore …
LW $fp, 24($sp) # restore old $fp
LW $ra, 28($sp) # restore $ra
ADDIU $sp,$sp, 32 # dealloc frame
JR $ra

sp

blue() {
pink(0,1,2,3,4,5);

}

saved fp

saved rafp

arguments

saved regs
blue

sp

arguments

saved ra

saved regs

local variables

arguments

saved regs

blue() {
pink(0,1,2,3,4,5);

}
pink(int a, int b, int c, int d, int e, int f) {

orange(10,11,12,13,14);
}

saved fp

saved ra

saved fp

fp

blue

pink

sp

arguments

saved ra

saved regs

local variables

arguments

saved regs

saved ra

blue() {
pink(0,1,2,3,4,5);

}
pink(int a, int b, int c, int d, int e, int f) {

orange(10,11,12,13,14);
}
orange(int a, int b, int c, int, d, int e) {

char buf[100];
gets(buf); // read string, no check!

}

local variables

saved fp

saved ra

saved fp

saved fp

fp

blue

pink

orange

buf[100]

int test(int a, int b) {

int tmp = (a&b)+(a|b);

int s = sum(tmp,1,2,3,4,5);

int u = sum(s,tmp,b,a,b,a);

return u + a + b;

}

allocate frame

save $ra

save old $fp

callee save ...

callee save ...

set new frame ptr

...

...

restore …

restore …

restore old $fp

restore $ra

dealloc frame

test:

Can we optimize the assembly code at all?

int test(int a, int b) {

int tmp = (a&b)+(a|b);

int s = sum(tmp,1,2,3,4,5);

int u = sum(s,tmp,b,a,b,a);

return u + a + b;

}

How can we optimize

the assembly code?

allocate frame

save $ra

save old $fp

callee save ...

callee save ...

set new frame ptr

...

...

restore …

restore …

restore old $fp

restore $ra

dealloc frame

test:

saved ra
saved fp

saved regs
($s0 ... $s7)

locals

outgoing
args

$fp

$sp

Leaf function does not invoke any other functions

int f(int x, int y) { return (x+y); }

Optimizations? saved ra
saved fp

saved regs
($s0 ... $s7)

locals

outgoing
args

$fp

$sp

0xfffffffc

0x00000000

top

bottom

0x7ffffffc
0x80000000

0x10000000

0x00400000

system reserved

stack

system reserved

code (text)

static data

dynamic data (heap)

.data

.text
PC

init(): 0x400000
printf(s, …): 0x4002B4
vnorm(a,b): 0x40107C
main(a,b): 0x4010A0
pi: 0x10000000
str1: 0x10000004

0x00000000
0x004010c4

0x00000000

0x00000000

0x7FFFFFF4
0x00000000
0x00000000

0x0040010c

0x00000015
0x10000004
0x00401090

0x00000000

0x00000000

CPU:
$pc=0x004003C0
$sp=0x7FFFFFAC
$ra=0x00401090

0x7FFFFFB0

What func is running?

Who called it?

Has it called anything?

Will it?

Args?

Stack depth?

Call trace?

0x7FFFFFDC

Upcoming agenda

• PA1 due today

• PA2 available and discussed during lab section this week

• PA2 Work-in-Progress due Monday, March 17th

• PA2 due Thursday, March 27th

• HW2 available next week, due before Prelim2 in April

• Spring break: Saturday, March 29th to Sunday, April 6th

• How to write and Debug a MIPS program using calling
convention

• first four arg words passed in $a0, $a1, $a2, $a3
• remaining arg words passed in parent’s stack frame
• return value (if any) in $v0, $v1
• stack frame at $sp

– contains $ra (clobbered on JAL to sub-functions)
– contains $fp
– contains local vars (possibly
clobbered by sub-functions)
– contains extra arguments to sub-functions
(i.e. argument “spilling)
– contains space for first 4 arguments
to sub-functions

• callee save regs are preserved
• caller save regs are not
• Global data accessed via $gp

saved ra
saved fp

saved regs
($s0 ... $s7)

locals

outgoing
args

$fp

$sp

