
Prof. Kavita Bala and Prof. Hakim Weatherspoon

CS 3410, Spring 2014

Computer Science

Cornell University

See P&H 2.8 and 2.12, and A.5-6

Write-
Back Memory

Instruction
Fetch Execute

Instruction
Decode

extend

register
file

control

alu

memory

din dout

addr

PC

memory

new

pc

in
st

IF/ID ID/EX EX/MEM MEM/WB

im
m

B

A

ct

rl

ct
rl

ct
rl

B

D

D

M

compute
jump/branch

targets

+4

forward
unit

detect
hazard

3

int x = 10;
x = 2 * x + 15;

C

compiler

addi r5, r0, 10
muli r5, r5, 2
addi r5, r5, 15

MIPS
assembly

00100000000001010000000000001010
00000000000001010010100001000000
00100000101001010000000000001111

machine
code

assembler

CPU

Circuits

Gates

Transistors

Silicon

op = addi r0 r5 10

op = addi r5 r5 15

op = r-type r5 r5 shamt=1 func=sll

r0 = 0
r5 = r0 + 10
r5 = r5<<1 #r5 = r5 * 2
r5 = r15 + 15

Calling Convention for Procedure Calls

Enable code to be reused by allowing code
snippets to be invoked

Will need a way to
• call the routine (i.e. transfer control to procedure)

• pass arguments
– fixed length, variable length, recursively

• return to the caller
– Putting results in a place where caller can find them

• Manage register

Write-
Back Memory

Instruction
Fetch Execute

Instruction
Decode

extend

register
file

control

alu

memory

din dout

addr

PC

memory

new

pc

in
st

IF/ID ID/EX EX/MEM MEM/WB

im
m

B

A

ct

rl

ct
rl

ct
rl

B

D

D

M

compute
jump/branch

targets

+4

forward
unit

detect
hazard

How do we share registers and use memory when making procedure calls?

• first four arg words passed in $a0, $a1, $a2, $a3
• remaining arg words passed in parent’s stack frame
• return value (if any) in $v0, $v1
• stack frame at $sp

– contains $ra (clobbered on JAL
 to sub-functions)

– contains local vars (possibly
 clobbered by sub-functions)

– contains extra arguments to sub-functions
– contains space for first 4 arguments

 to sub-functions

• callee save regs
are preserved

• caller save regs
are not

• Global data accessed via $gp

saved ra
saved fp

saved regs
($s0 ... $s7)

locals

outgoing
args

$fp 

$sp 

Return address: $31 (ra)

Stack pointer: $29 (sp)
Frame pointer: $30 (fp)
First four arguments: $4-$7 (a0-a3)
Return result: $2-$3 (v0-v1)
Callee-save free regs: $16-$23 (s0-s7)

Caller-save free regs: $8-$15,$24,$25 (t0-t9)
Reserved: $26, $27
Global pointer: $28 (gp)
Assembler temporary: $1 (at)

r0 $zero zero

r1 $at assembler temp

r2 $v0 function
return values r3 $v1

r4 $a0

function
arguments

r5 $a1

r6 $a2

r7 $a3

r8 $t0

temps
(caller save)

r9 $t1
r10 $t2
r11 $t3
r12 $t4
r13 $t5
r14 $t6
r15 $t7

r16 $s0

saved
(callee save)

r17 $s1

r18 $s2

r19 $s3

r20 $s4

r21 $s5

r22 $s6

r23 $s7

r24 $t8 more temps
(caller save) r25 $t9

r26 $k0 reserved for
kernel r27 $k1

r28 $gp global data pointer
r29 $sp stack pointer
r30 $fp frame pointer
r31 $ra return address

Calling Convention for Procedure Calls

Enable code to be reused by allowing code
snippets to be invoked

Will need a way to
• call the routine (i.e. transfer control to procedure)

• pass arguments
– fixed length, variable length, recursively

• return to the caller
– Putting results in a place where caller can find them

• Manage register

int main (int argc, char* argv[]) {
 int n = 9;
 int result = multi(n);
}

int multi(int n) {
 int f = 1;
 int i = 1;
 int j = n – 1;
 while(j >= 0) {
 f *= i;
 i++;
 j = n -1;
 }
 return f;
}

main:

 j mult

Laftercall1:

 add $1,$2,$3

mult:

 …

 …

 j Laftercall1

Jumps and branches can transfer control to the callee (called procedure)

Jumps and branches can transfer control back

main:

 j mult

Laftercall1:

 add $1,$2,$3

 j mult

Laftercall2:

 sub $3,$4,$5

mult:

 …

 …

 j Laftercall1

 j Laftercall2

Jumps and branches can transfer control to the callee (called procedure)

Jumps and branches can transfer control back

What happens when there are multiple calls from different call sites?

Not correct. How do
We know what location
to return to?

JAL (Jump And Link) instruction moves a new value
into the PC, and simultaneously saves the old
value in register $31 (aka $ra or return address)

Thus, can get back from the subroutine to the
instruction immediately following the jump by
transferring control back to PC in register $31

main:

 jal mult

Laftercall1:

 add $1,$2,$3

 jal mult

Laftercall2:

 sub $3,$4,$5

mult:

 …

 …

 jr $31

JAL saves the PC in register $31

Subroutine returns by jumping to $31

What happens for recursive invocations?

main:

 jal mult

Laftercall1:

 add $1,$2,$3

 jal mult

Laftercall2:

 sub $3,$4,$5

mult:

 …

 …

 jr $31

JAL saves the PC in register $31

Subroutine returns by jumping to $31

What happens for recursive invocations?

int main (int argc, char* argv[]) {
 int n = 9;
 int result = multi(n);
}

int multi(int n) {
 int f = 1;
 int i = 1;
 int j = n – 1;
 while(j >= 0) {
 f *= i;
 i++;
 j = n -1;
 }
 return f;
}

int main (int argc, char* argv[]) {

 int n = 9;

 int result = multi(n);

}

What happens for recursive invocations?

int multi(int n) {

 if(n == 0) {

 return 1;

 } else {

 return n * multi(n - 1);

 }

}

main:

 jal mult

Laftercall1:

 add $1,$2,$3

 jal mult

Laftercall2:

 sub $3,$4,$5

mult:

 …

 beq $4, $0, Lout

 ...

 jal mult

Linside:

 …

Lout:

 jr $31

What happens for recursive invocations?

Recursion overwrites contents of $31

Need to save and restore the register contents

Call stack
• contains activation records

(aka stack frames)

Each activation record contains
• the return address for that invocation

• the local variables for that procedure

A stack pointer (sp) keeps track of the
top of the stack

• dedicated register ($29) on the MIPS

Manipulated by push/pop operations
• push: move sp down, store

• pop: load, move sp up

sp

Laftercall1

Linside

high mem

low mem

Push: ADDIU $sp, $sp, -4
 SW $31, 0 ($sp)

$31 =

$31 =
sp

Call stack
• contains activation records

(aka stack frames)

Each activation record contains
• the return address for that invocation

• the local variables for that procedure

A stack pointer (sp) keeps track of the
top of the stack

• dedicated register ($29) on the MIPS

Manipulated by push/pop operations
• push: move sp down, store

• pop: load, move sp up

sp

Laftercall1

Linside

high mem

low mem

Push: ADDIU $sp, $sp, -4
 SW $31, 0 ($sp)

Pop: LW $31, 0 ($sp)
 ADDIU $sp, $sp, 4
 JR $31

$31 =

$31 =
sp

(Call) Stacks start at a high address in memory

Stacks grow down as frames are pushed on

• Note: data region starts at a low address and grows up

• The growth potential of stacks and data region are not
artificially limited

0xfffffffc

0x00000000

top

bottom

0x7ffffffc
0x80000000

0x10000000

0x00400000

system reserved

stack

system reserved

code (text)

static data

dynamic data (heap)

.data

.text

Write-
Back Memory

Instruction
Fetch Execute

Instruction
Decode

extend

register
file

control

alu

memory

din dout

addr

PC

memory

new

pc

in
st

IF/ID ID/EX EX/MEM MEM/WB

im
m

B

A

ct

rl

ct
rl

ct
rl

B

D

D

M

compute
jump/branch

targets

+4

forward
unit

detect
hazard Stack, Data, Code

Stored in Memory

$29 ($sp)
$31 ($ra)

JAL (Jump And Link) instruction moves a new value
into the PC, and simultaneously saves the old
value in register $31 (aka $ra or return address)
Thus, can get back from the subroutine to the
instruction immediately following the jump by
transferring control back to PC in register $31

Need a Call Stack to return to correct calling
procedure. To maintain a stack, need to store an
activation record (aka a “stack frame”) in memory.
Stacks keep track of the correct return address by
storing the contents of $31 in memory (the stack).

main:

 jal mult

Laftercall1:

 add $1,$2,$3

 jal mult

Laftercall2:

 sub $3,$4,$5

mult:

 addiu $sp,$sp,-4

 sw $31, 0($sp)

 beq $4, $0, Lout

 ...

 jal mult

Linside:

 …

Lout:

 lw $31, 0($sp)

 addiu $sp,$sp,4

 jr $31

Stack used to save and restore contents of $31

sp

Laftercall1

Linside

high mem

low mem

Linside

Linside sp

sp

Stack used to save and restore contents of $31

How about arguments?

sp

Laftercall1

Linside

high mem

low mem

Linside

Linside sp

sp

main:

 jal mult

Laftercall1:

 add $1,$2,$3

 jal mult

Laftercall2:

 sub $3,$4,$5

mult:

 addiu $sp,$sp,-4

 sw $31, 0($sp)

 beq $4, $0, Lout

 ...

 jal mult

Linside:

 …

Lout:

 lw $31, 0($sp)

 addiu $sp,$sp,4

 jr $31

Need consistent way of passing arguments and getting the
result of a subroutine invocation

Need consistent way of passing arguments and getting the
result of a subroutine invocation

Given a procedure signature, need to know where
arguments should be placed

• int min(int a, int b);

• int subf(int a, int b, int c, int d, int e);

• int isalpha(char c);

• int treesort(struct Tree *root);

• struct Node *createNode();

• struct Node mynode();

Too many combinations of char, short, int, void *, struct, etc.
• MIPS treats char, short, int and void * identically

First four arguments are
passed in registers

• Specifically, $4, $5, $6 and $7,
aka $a0, $a1, $a2, $a3

The returned result is passed
back in a register

• Specifically, $2, aka $v0

main:

 li $a0, 6

 li $a1, 7

 jal min

 // result in $v0

• args passed in $a0, $a1, $a2, $a3

• return value (if any) in $v0, $v1

• stack frame at $sp

– contains $ra (clobbered on JAL to sub-functions)

Q: What about argument lists?

What if there are
more than 4
arguments?

main:

 li $a0, 0

 li $a1, 1

 li $a2, 2

 li $a3, 3

 jal subf

 // result in $v0

What if there are
more than 4
arguments?

Use the stack for
the additional
arguments

• “spill”

main:

 li $a0, 0

 li $a1, 1

 li $a2, 2

 li $a3, 3

 li $8, 4

 addiu $sp,$sp,-4

 sw $8, 0($sp)

 jal subf

 // result in $v0

sp

4

What if there are
more than 4
arguments?

Use the stack for
the additional
arguments

• “spill”

main:

 li $a0, 0

 li $a1, 1

 li $a2, 2

 li $a3, 3

 addiu $sp,$sp,-8

 li $8, 4

 sw $8, 0($sp)

 li $8, 5

 sw $8, 4($sp)

 jal subf

 // result in $v0

sp

5

4

printf(“Coordinates are: %d %d %d\n”, 1, 2, 3);

Could just use the regular calling convention, placing first four
arguments in registers, spilling the rest onto the stack

• Callee requires special-case code

• if(argno == 1) use a0, … else if (argno == 4) use a3, else use stack
offset

Best to use an (initially confusing but ultimately simpler)
approach:

• Pass the first four arguments in registers, as usual

• Pass the rest on the stack

• Reserve space on the stack for all arguments, including the first four

Simplifies functions that use variable-length arguments
• Store a0-a3 on the slots allocated on the stack, refer to all arguments

through the stack

First four arguments
are in registers

The rest are on the
stack

There is room on
the stack for the
first four
arguments, just in
case

main:

 li $a0, 0

 li $a1, 1

 li $a2, 2

 li $a3, 3

 addiu sp,sp,-24

 li $8, 4

 sw $8, 16($sp)

 li $8, 5

 sw $8, 20($sp)

 jal subf

 // result in$ v0

sp

4

space for $a3

space for $a2

space for $a1

space for $a0

5

0($sp)

4($sp)

8($sp)

12($sp)

16($sp)

20($sp)

sp

4

space for $a3

space for $a2

space for $a1

space for $a0

5

blue() {
 pink(0,1,2,3,4,5);
}

sp
return address

sp

4

space for $a3

space for $a2

space for $a1

space for $a0

5

return address

blue() {
 pink(0,1,2,3,4,5);
}
pink(int a, int b, int c, int d, int e, int f) {
 …
}

sp

return address

sp

4

space for $a3

space for $a2

space for $a1

space for $a0

5

return address

blue() {
 pink(0,1,2,3,4,5);
}
pink(int a, int b, int c, int d, int e, int f) {
 …
}

return address

blue

pink

• first four arg words passed in $a0, $a1, $a2, $a3

• remaining arg words passed on the stack

• return value (if any) in $v0, $v1

• stack frame at $sp

– contains $ra (clobbered on JAL to sub-functions)

– contains extra arguments to sub-functions

– contains space for first 4 arguments to sub-functions

r0 $zero zero

r1 $at assembler temp

r2

r3

r4

r5

r6

r7

r8
r9

r10
r11
r12
r13
r14
r15

r16

r17

r18

r19

r20

r21

r22

r23

r24
r25
r26 $k0 reserved

for OS kernel r27 $k1
r28
r29
r30
r31 $ra return address

$v0 function
return values $v1

$a0

function
arguments

$a1

$a2

$a3

Pseudo-Instructions
e.g. BLZ

SLT $at
BNE $at, 0, L

Pointers are 32-bits, treat just like ints

Pointers to structs are pointers

C allows passing whole structs
• int distance(struct Point p1, struct Point p2);

• Treat like a collection of consecutive 32-bit arguments,
use registers for first 4 words, stack for rest

• Of course, Inefficient and to be avoided, better to use
int distance(struct Point *p1, struct Point *p2);

in all cases

Global variables are allocated in the “data” region of the
program

• Exist for all time, accessible to all routines

Local variables are allocated within the stack frame
• Exist solely for the duration of the stack frame

Dangling pointers are pointers into a destroyed stack
frame

• C lets you create these, Java does not
• int *foo() { int a; return &a; }

How does a function load global data?

• global variables are just above 0x10000000

Convention: global pointer

• $28 is $gp (pointer into middle of global data section)
$gp = 0x10008000

• Access most global data using LW at $gp +/- offset
LW $v0, 0x8000($gp)
LW $v1, 0x7FFF($gp)

0xfffffffc

0x00000000

top

bottom

0x7ffffffc
0x80000000

0x10000000

0x00400000

system reserved

stack

system reserved

code (text)

static data

dynamic data (heap) $gp

It is often cumbersome to keep track of location of data
on the stack

• The offsets change as new values are pushed onto and
popped off of the stack

Keep a pointer to the top of the stack frame

• Simplifies the task of referring to items on the stack

A frame pointer, $30, aka $fp

• Value of $sp upon procedure entry

• Can be used to restore $sp on exit

• first four arg words passed in $a0, $a1, $a2, $a3

• remaining arg words passed in parent’s stack frame

• return value (if any) in $v0, $v1

• stack frame at $sp

– contains $ra (clobbered on JAL

 to sub-functions)

– contains extra arguments to sub-functions

– contains space for first 4 arguments

 to sub-functions

What convention should we use to share use of
registers across procedure calls?

Suppose a routine would like to store a value in a register

Two options: callee-save and caller-save
Callee-save:

• Assume that one of the callers is already using that register to
hold a value of interest

• Save the previous contents of the register on procedure entry,
restore just before procedure return

• E.g. $31

Caller-save:
• Assume that a caller can clobber any one of the registers
• Save the previous contents of the register before proc call
• Restore after the call

MIPS calling convention supports both

Assume caller is using the registers

Save on entry, restore on exit

Pays off if caller is actually using the
registers, else the save and restore are
wasted

main:
 addiu $sp,$sp,-32
 sw $31,28($sp)
 sw $30, 24($sp)
 sw $17, 20($sp)
 sw $16, 16($sp)
 addiu $30, $sp, 28
 …
 [use $16 and $17]
 …
 lw $31,28($sp)
 lw $30,24($sp)
 lw $17, 20$sp)
 lw $16, 16($sp)
 addiu $sp,$sp,32
 jr $31

Assume caller is using the registers

Save on entry, restore on exit

Pays off if caller is actually using the
registers, else the save and restore are
wasted

main:
 addiu $sp,$sp,-32
 sw $ra,28($sp)
 sw $fp, 24($sp)
 sw $s1, 20($sp)
 sw $s0, 16($sp)
 addiu $fp, $sp, 28
 …
 [use $s0 and $s1]
 …
 lw $ra,28($sp)
 lw $fp,24($sp)
 lw $s1, 20$sp)
 lw $s0, 16($sp)
 addiu $sp,$sp,32
 jr $ra

Assume the registers are free for the
taking, clobber them

But since other subroutines will do
the same, must protect values that
will be used later
By saving and restoring them before
and after subroutine invocations

Pays off if a routine makes few calls to
other routines with values that need
to be preserved

main:
 …
 [use $8 & $9]
 …
 addiu $sp,$sp,-8
 sw $9, 4($sp)
 sw $8, 0($sp)
 jal mult
 lw $9, 4($sp)
 lw $8, 0($sp)
 addiu $sp,$sp,8
 …
 [use $8 & $9]

Assume the registers are free for the
taking, clobber them

But since other subroutines will do
the same, must protect values that
will be used later
By saving and restoring them before
and after subroutine invocations

Pays off if a routine makes few calls to
other routines with values that need
to be preserved

main:
 …
 [use $t0 & $t1]
 …
 addiu $sp,$sp,-8
 sw $t1, 4($sp)
 sw $t0, 0($sp)
 jal mult
 lw $t1, 4($sp)
 lw $t0, 0($sp)
 addiu $sp,$sp,8
 …
 [use $t0 & $t1]

saved ra
saved fp

saved regs
($s0 ... $s7)

locals

outgoing
args

fp

sp

ADDIU $sp, $sp, -32 # allocate frame
SW $ra, 28($sp) # save $ra
SW $fp, 24($sp) # save old $fp
SW $s1, 20($sp) # save ...
SW $s0, 16($sp) # save ...
ADDIU $fp, $sp, 28 # set new frame ptr
… ...
BODY
… ...
LW $s0, 16($sp) # restore …
LW $s1, 20($sp) # restore …
LW $fp, 24($sp) # restore old $fp
LW $ra, 28($sp) # restore $ra
ADDIU $sp,$sp, 32 # dealloc frame
JR $ra

sp

blue() {
 pink(0,1,2,3,4,5);
}

saved fp

saved ra fp

arguments

saved regs
blue

sp

arguments

saved ra

saved regs

local variables

arguments

saved regs

blue() {
 pink(0,1,2,3,4,5);
}
pink(int a, int b, int c, int d, int e, int f) {
 orange(10,11,12,13,14);
}

saved fp

saved ra

saved fp

fp

blue

pink

sp

arguments

saved ra

saved regs

local variables

arguments

saved regs

saved ra

blue() {
 pink(0,1,2,3,4,5);
}
pink(int a, int b, int c, int d, int e, int f) {
 orange(10,11,12,13,14);
}
orange(int a, int b, int c, int, d, int e) {
 char buf[100];
 gets(buf); // read string, no check!
}

local variables

saved fp

saved ra

saved fp

saved fp

fp

blue

pink

orange

buf[100]

sp

arguments

saved ra

saved regs

local variables

arguments

saved regs

saved ra

blue() {
 pink(0,1,2,3,4,5);
}
pink(int a, int b, int c, int d, int e, int f) {
 orange(10,11,12,13,14);
}
orange(int a, int b, int c, int, d, int e) {
 char buf[100];
 gets(buf); // read string, no check!
}

local variables

saved fp

saved ra

saved fp

saved fp

fp

What happens if more than 100 bytes
is written to buf?

buf[100]

Return address: $31 (ra)

Stack pointer: $29 (sp)
Frame pointer: $30 (fp)
First four arguments: $4-$7 (a0-a3)
Return result: $2-$3 (v0-v1)
Callee-save free regs: $16-$23 (s0-s7)

Caller-save free regs: $8-$15,$24,$25 (t0-t9)
Reserved: $26, $27
Global pointer: $28 (gp)
Assembler temporary: $1 (at)

r0 $zero zero

r1 $at assembler temp

r2 $v0 function
return values r3 $v1

r4 $a0

function
arguments

r5 $a1

r6 $a2

r7 $a3

r8 $t0

temps
(caller save)

r9 $t1
r10 $t2
r11 $t3
r12 $t4
r13 $t5
r14 $t6
r15 $t7

r16 $s0

saved
(callee save)

r17 $s1

r18 $s2

r19 $s3

r20 $s4

r21 $s5

r22 $s6

r23 $s7

r24 $t8 more temps
(caller save) r25 $t9

r26 $k0 reserved for
kernel r27 $k1

r28 $gp global data pointer
r29 $sp stack pointer
r30 $fp frame pointer
r31 $ra return address

• first four arg words passed in $a0, $a1, $a2, $a3
• remaining arg words passed in parent’s stack frame
• return value (if any) in $v0, $v1
• stack frame at $sp

– contains $ra (clobbered on JAL
 to sub-functions)

– contains local vars (possibly
 clobbered by sub-functions)

– contains extra arguments to sub-functions
– contains space for first 4 arguments

 to sub-functions

• callee save regs
are preserved

• caller save regs
are not

• Global data accessed via $gp

saved ra
saved fp

saved regs
($s0 ... $s7)

locals

outgoing
args

$fp 

$sp 

