
Prof. Kavita Bala and Prof. Hakim Weatherspoon

CS 3410, Spring 2014

Computer Science

Cornell University

See P&H Appendix 2.16 – 2.18, and 2.21

Lectures

• Need to repeat student questions

• Slow down

• iClicker

• Will get you feedback

• Lecture slides not completed by end of lecture

• Handouts

• Will make available online and in front and back

• Lecture slide formats, pdf and pptx

Homeworks

• Really liked having fewer deadlines

• Liked modified problems

• Labs

• Lots of good feedback

• Over-crowded labs. Can go to morning sessions

• Control the length of the lab sessions

There is a Lab Section this week, C-Lab2

Project1 (PA1) is due next Tueday, March 11th

Prelim today week

 Starts at 7:30pm sharp

 Upson B17 [a-e]*, Olin 255[f-m]*, Philips 101 [n-z]*

 Go based on netid

Prelim1 today:

• Time: We will start at 7:30pm sharp, so come early

• Loc: Upson B17 [a-e]*, Olin 255[f-m]*, Philips 101 [n-z]*

• Closed Book
• Cannot use electronic device or outside material

• Practice prelims are online in CMS

• Material covered everything up to end of last week
• Everything up to and including data hazards

• Appendix B (logic, gates, FSMs, memory, ALUs)

• Chapter 4 (pipelined [and non] MIPS processor with hazards)

• Chapters 2 (Numbers / Arithmetic, simple MIPS instructions)

• Chapter 1 (Performance)

• HW1, Lab0, Lab1, Lab2

Write-
Back Memory

Instruction
Fetch Execute

Instruction
Decode

extend

register
file

control

alu

memory

din dout

addr

PC

memory

new

pc

in
st

IF/ID ID/EX EX/MEM MEM/WB

im
m

B

A

ct

rl

ct
rl

ct
rl

B

D

D

M

compute
jump/branch

targets

+4

forward
unit

detect
hazard

7

int x = 10;
x = 2 * x + 15;

C

compiler

addi r5, r0, 10
muli r5, r5, 2
addi r5, r5, 15

MIPS
assembly

00100000000001010000000000001010
00000000000001010010100001000000
00100000101001010000000000001111

machine
code

assembler

CPU

Circuits

Gates

Transistors

Silicon

op = addi r0 r5 10

op = addi r5 r5 15

op = r-type r5 r5 shamt=1 func=sll

r0 = 0
r5 = r0 + 10
r5 = r5<<1 #r5 = r5 * 2
r5 = r15 + 15

8

int x = 10;
x = 2 * x + 15;

C

compiler

addi r5, r0, 10
muli r5, r5, 2
addi r5, r5, 15

MIPS
assembly

00100000000001010000000000001010
00000000000001010010100001000000
00100000101001010000000000001111

machine
code

assembler

CPU

Circuits

Gates

Transistors

Silicon

Instruction Set
Architecture (ISA)

High Level
Languages

Instruction Set Architectures

• ISA Variations, and CISC vs RISC

Next Time

• Program Structure and Calling Conventions

Is MIPS the only possible instruction set
architecture (ISA)?

What are the alternatives?

ISA defines the permissible instructions
• MIPS: load/store, arithmetic, control flow, …

• ARMv7: similar to MIPS, but more shift, memory, &
conditional ops

• ARMv8 (64-bit): even closer to MIPS, no conditional ops

• VAX: arithmetic on memory or registers, strings, polynomial
evaluation, stacks/queues, …

• Cray: vector operations, …

• x86: a little of everything

Accumulators
• Early stored-program computers had one register!

• One register is two registers short of a MIPS instruction!

• Requires a memory-based operand-addressing mode
– Example Instructions: add 200

 Add the accumulator to the word in memory at address 200

 Place the sum back in the accumulator

EDSAC (Electronic Delay Storage
Automatic Calculator) in 1949

Intel 8008 in 1972
was an accumulator

Next step, more registers…

• Dedicated registers

– E.g. indices for array references in data transfer instructions,
separate accumulators for multiply or divide instructions,
top-of-stack pointer.

• Extended Accumulator

– One operand may be in memory (like previous accumulators).

– Or, all the operands may be registers (like MIPS).

Intel 8086
“extended accumulator”
Processor for IBM PCs

Next step, more registers…

• General-purpose registers

– Registers can be used for any purpose

– E.g. MIPS, ARM, x86

• Register-memory architectures

– One operand may be in memory (e.g. accumulators)

– E.g. x86 (i.e. 80386 processors

• Register-register architectures (aka load-store)

– All operands must be in registers

– E.g. MIPS, ARM

The number of available registers greatly influenced
the instruction set architecture (ISA)

Machine Num General Purpose Registers Architectural Style Year

EDSAC 1 Accumulator 1949

IBM 701 1 Accumulator 1953

CDC 6600 8 Load-Store 1963

IBM 360 18 Register-Memory 1964

DEC PDP-8 1 Accumulator 1965

DEC PDP-11 8 Register-Memory 1970

Intel 8008 1 Accumulator 1972

Motorola 6800 2 Accumulator 1974

DEC VAX 16 Register-Memory, Memory-Memory 1977

Intel 8086 1 Extended Accumulator 1978

Motorola 6800 16 Register-Memory 1980

Intel 80386 8 Register-Memory 1985

ARM 16 Load-Store 1985

MIPS 32 Load-Store 1985

HP PA-RISC 32 Load-Store 1986

SPARC 32 Load-Store 1987

PowerPC 32 Load-Store 1992

DEC Alpha 32 Load-Store 1992

HP/Intel IA-64 128 Load-Store 2001

AMD64 (EMT64) 16 Register-Memory 2003

How to compute with limited resources?

i.e. how do you design your ISA if you have limited
resources?

People programmed in assembly and machine code!
• Needed as many addressing modes as possible

• Memory was (and still is) slow

CPUs had relatively few registers
• Register’s were more “expensive” than external mem

• Large number of registers requires many bits to index

Memories were small
• Encouraged highly encoded microcodes as instructions

• Variable length instructions, load/store, conditions, etc

People programmed in assembly and machine code!

E.g. x86
• > 1000 instructions!

– 1 to 15 bytes each

– E.g. dozens of add instructions

• operands in dedicated registers, general purpose
registers, memory, on stack, …

– can be 1, 2, 4, 8 bytes, signed or unsigned

• 10s of addressing modes
– e.g. Mem[segment + reg + reg*scale + offset]

E.g. VAX
• Like x86, arithmetic on memory or registers, but also

on strings, polynomial evaluation, stacks/queues, …

The number of available registers greatly
influenced the instruction set architecture (ISA)

Complex Instruction Set Computers were very
complex

• Necessary to reduce the number of instructions
required to fit a program into memory.

• However, also greatly increased the complexity of the
ISA as well.

How do we reduce the complexity of the ISA while
maintaining or increasing performance?

John Cock

• IBM 801, 1980 (started in 1975)

• Name 801 came from the bldg that housed the project

• Idea: Possible to make a very small and very fast core

• Influences: Known as “the father of RISC
Architecture”. Turing Award Recipient and National
Medal of Science.

Dave Patterson

• RISC Project, 1982

• UC Berkeley

• RISC-I: ½ transistors & 3x
faster

• Influences: Sun SPARC,
namesake of industry

John L. Hennessy

• MIPS, 1981

• Stanford

• Simple pipelining, keep full

• Influences: MIPS computer
system, PlayStation, Nintendo

Dave Patterson

• RISC Project, 1982

• UC Berkeley

• RISC-I: ½ transistors & 3x
faster

• Influences: Sun SPARC,
namesake of industry

John L. Hennessy

• MIPS, 1981

• Stanford

• Simple pipelining, keep full

• Influences: MIPS computer
system, PlayStation, Nintendo

MIPS Design Principles

Simplicity favors regularity
• 32 bit instructions

Smaller is faster
• Small register file

Make the common case fast
• Include support for constants

Good design demands good compromises
• Support for different type of interpretations/classes

MIPS = Reduced Instruction Set Computer (RlSC)
• ≈ 200 instructions, 32 bits each, 3 formats

• all operands in registers
– almost all are 32 bits each

• ≈ 1 addressing mode: Mem[reg + imm]

x86 = Complex Instruction Set Computer (ClSC)
• > 1000 instructions, 1 to 15 bytes each

• operands in dedicated registers, general purpose
registers, memory, on stack, …

– can be 1, 2, 4, 8 bytes, signed or unsigned

• 10s of addressing modes
– e.g. Mem[segment + reg + reg*scale + offset]

RISC Philosophy

Regularity & simplicity

Leaner means faster

Optimize the
common case

Energy efficiency

Embedded Systems

Phones/Tablets

CISC Rebuttal

Compilers can be smart

Transistors are plentiful

Legacy is important

Code size counts

Micro-code!

Desktops/Servers

• Android OS on
ARM processor

• Windows OS on
Intel (x86) processor

The number of available registers greatly influenced the
instruction set architecture (ISA)

Complex Instruction Set Computers were very complex
- Necessary to reduce the number of instructions required to
fit a program into memory.
- However, also greatly increased the complexity of the ISA as
well.

Back in the day… CISC was necessary because everybody
programmed in assembly and machine code! Today, CISC
ISA’s are still dominant due to the prevalence of x86 ISA
processors. However, RISC ISA’s today such as ARM have an
ever increasing market share (of our everyday life!).
ARM borrows a bit from both RISC and CISC.

How does MIPS and ARM compare to each other?

All MIPS instructions are 32 bits long, has 3 formats

R-type

I-type

J-type

op rs rt rd shamt func

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

op rs rt immediate

6 bits 5 bits 5 bits 16 bits

op immediate (target address)

6 bits 26 bits

All ARMv7 instructions are 32 bits long, has 3 formats

R-type

I-type

J-type

opx op rs rd opx rt

4 bits 8 bits 4 bits 4 bits 8 bits 4 bits

opx op rs rd immediate

4 bits 8 bits 4 bits 4 bits 12 bits

opx op immediate (target address)

4 bits 4 bits 24 bits

• while(i != j) {

• if (i > j)

• i -= j;

• else

• j -= i;

• }

Loop: BEQ Ri, Rj, End // if "NE" (not equal), then stay in loop

 SLT Rd, Rj, Ri // "GT" if (i > j),

 BNE Rd, R0, Else // …

 SUB Ri, Ri, Rj // if "GT" (greater than), i = i-j;

 J Loop

Else: SUB Rj, Rj, Ri // or "LT" if (i < j)

 J Loop // if "LT" (less than), j = j-i;

End:

In MIPS, performance will be
slow if code has a lot of branches

• while(i != j) {

• if (i > j)

• i -= j;

• else

• j -= i;

• }

LOOP: CMP Ri, Rj // set condition "NE" if (i != j)

 // "GT" if (i > j),

 // or "LT" if (i < j)

 SUBGT Ri, Ri, Rj // if "GT" (greater than), i = i-j;

 SUBLE Rj, Rj, Ri // if "LE" (less than or equal), j = j-i;

 BNE loop // if "NE" (not equal), then loop

= ≠ < >
0 1 0 0

= ≠ < >
0 0 0 1

= ≠ < >
1 0 1 0

= ≠ < >
0 1 0 0

In ARM, can avoid delay due to
Branches with conditional
instructions

Shift one register (e.g. Rc) any amount

Add to another register (e.g. Rb)

Store result in a different register (e.g. Ra)

ADD Ra, Rb, Rc LSL #4

Ra = Rb + Rc<<4

Ra = Rb + Rc x 16

All ARMv7 instructions are 32 bits long, has 3 formats

Reduced Instruction Set Computer (RISC) properties

• Only Load/Store instructions access memory

• Instructions operate on operands in processor registers

• 16 registers

Complex Instruction Set Computer (CISC) properties

• Autoincrement, autodecrement, PC-relative addressing

• Conditional execution

• Multiple words can be accessed from memory with a
single instruction (SIMD: single instr multiple data)

All ARMv8 instructions are 64 bits long, has 3 formats

Reduced Instruction Set Computer (RISC) properties

• Only Load/Store instructions access memory

• Instructions operate on operands in processor registers

• 16 registers

Complex Instruction Set Computer (CISC) properties

• Autoincrement, autodecrement, PC-relative addressing

• Conditional execution

• Multiple words can be accessed from memory with a
single instruction (SIMD: single instr multiple data)

ISA defines the permissible instructions
• MIPS: load/store, arithmetic, control flow, …

• ARMv7: similar to MIPS, but more shift, memory, &
conditional ops

• ARMv8 (64-bit): even closer to MIPS, no conditional ops

• VAX: arithmetic on memory or registers, strings, polynomial
evaluation, stacks/queues, …

• Cray: vector operations, …

• x86: a little of everything

How do we coordinate use of registers?

 Calling Conventions!

PA1 due next Tueday

Time: We will start at 7:30pm sharp, so come early

Loc: Upson B17 [a-e]*, Olin 255[f-m]*, Philips 101 [n-z]*

Closed Book

• Cannot use electronic device or outside material

Material covered everything up to end of last week

• Everything up to and including data hazards

• Appendix B (logic, gates, FSMs, memory, ALUs)

• Chapter 4 (pipelined [and non] MIPS processor with hazards)

• Chapters 2 (Numbers / Arithmetic, simple MIPS instructions)

• Chapter 1 (Performance)

• HW1, Lab0, Lab1, Lab2

General Case: Mealy Machine

 Outputs and next state depend on both
current state and input

Next State

Current
State

Input

Output
R

eg
is

te
rs

Comb.
Logic

Special Case: Moore Machine

 Outputs depend only on current state

Next State

Current
State

Input

Output
R

eg
is

te
rs

 Comb.
Logic

Comb.
Logic

How long does it take to compute a result?

S

A B

Cin

S

A B

S

A B

S

A B

Cout

How long does it take to compute a result?

• Speed of a circuit is affected by the number of gates in series (on

the critical path or the deepest level of logic)

S

A B

Cin

S

A B

S

A B

S

A B

Cout

Strategy:
(1) Draw a state diagram (e.g. Mealy Machine)
(2) Write output and next-state tables
(3) Encode states, inputs, and outputs as bits
(4) Determine logic equations for next state and outputs

Next State

Current
State

Input

Output

Comb.
Logic a

b

D Q
s z s'

s'

Next
State

z = a bs + abs + abs + abs

s’ = abs + a bs + ab s + abs

.

.

.

Endianness: Ordering of bytes within a memory word

1000 1001 1002 1003

0x12345678

Big Endian = most significant part first (MIPS, networks)

Little Endian = least significant part first (MIPS, x86)

as 4 bytes

as 2 halfwords

as 1 word

1000 1001 1002 1003

0x12345678

as 4 bytes

as 2 halfwords

as 1 word

0x78 0x56 0x34 0x12

0x5678 0x1234

0x12 0x34 0x56 0x78

0x1234 0x5678

Examples (big/little endian):

r5 contains 5 (0x00000005)

SB r5, 2(r0)

LB r6, 2(r0)

R[r6] = 0x05

SW r5, 8(r0)

LB r7, 8(r0)

LB r8, 11(r0)

R[r7] = 0x00

R[r8] = 0x05

0x00000000

0x00000001

0x00000002

0x00000003

0x00000004

0x00000005

0x00000006

0x00000007

0x00000008

0x00000009

0x0000000a

0x0000000b

...

0xffffffff

0x05

0x00

0x00

0x00

0x05

add r3, r1, r2

sub r5, r3, r1

data
mem

inst
mem

D

B

A

M W IF ID Ex

IF ID Ex M W

add r3, r1, r2

sub r5, r3, r1

or r6, r3, r4

data
mem

inst
mem

D

B

A

IF ID Ex M W

IF ID

IF W

Ex M W

ID Ex M

add r3, r1, r2

sub r5, r3, r1

or r6, r3, r4

add r6, r3, r8

data
mem

inst
mem

D

B

A

IF ID Ex M W

IF ID

IF W

Ex M W

ID Ex M

IF ID Ex M W

data
mem

inst
mem

D

B

A

NOP sub r6,r4,r1 lw r4, 20(r8)

Ex

lw r4, 20(r8)

or r6, r3, r4

IF ID Ex M W

IF ID Ex M W ID

Stall

load-use stall
DELAY SLOT!

add r3, r1, r2

nand r5, r3, r4

add r2, r6, r3

lw r6, 24(r3)

sw r6, 12(r2)

add r3, r1, r2

nand r5, r3, r4

add r2, r6, r3

lw r6, 24(r3)

sw r6, 12(r2)

Forwarding from Ex/MID/Ex (MEx)

Forwarding from M/WID/Ex (WEx)

RegisterFile (RF) Bypass

Forwarding from M/WID/Ex (WEx)

Stall
+ Forwarding from M/WID/Ex (WEx)

5 Hazards

