Pipelining and Hazards

CS 3410, Spring 2014
Computer Science
Cornell University

See P&H Chapter: 4.6-4.8

Announcements

Prelim next week
Tuesday at 7:30.
Upson B17 [a-e]*, Olin 255[f-m]*, Philips 101 [n-z]*
Go based on netid
Prelim reviews
Friday and Sunday evening. 7:30 again.
Location: TBA on piazza
Prelim conflicts
Contact KB, Prof. Weatherspoon, Andrew Hirsch
Survey
Constructive feedback is very welcome

Administrivia

Preliml;:

* Time: We will start at 7:30pm sharp, so come early

* Loc: Upson B17 [a-e]*, Olin 255[f-m]*, Philips 101 [n-z]*
e Closed Book

. Cannot use electronic device or outside material

Practice prelims are online in CMS

Material covered everything up to end of this week
Everything up to and including data hazards
Appendix B (logic, gates, FSMs, memory, ALUs)
Chapter 4 (pipelined [and non] MIPS processor with hazards)
Chapters 2 (Numbers / Arithmetic, simple MIPS instructions)
Chapter 1 (Performance)
HW1, LabO, Lab1l, Lab2

Pipelining

Principle:
Throughput increased by parallel execution
Balanced pipeline very important

Else slowest stage dominates performance

Pipelining:
* |dentify pipeline stages
* |solate stages from each other
* Resolve pipeline hazards (this and next lecture)

Basic Pipeline
Five stage “RISC” load-store architecture

1. Instruction fetch (IF)
— get instruction from memory, increment PC

2. Instruction Decode (ID)
— translate opcode into control signals and read registers

3. Execute (EX)

— perform ALU operation, compute jump/branch targets

4. Memory (MEM)

— access memory if needed

5. Writeback (WB)
— update register file

Pipelined Implementation

* Each instruction goes through the 5 stages

* Each stage takes one clock cycle
So slowest stage determines clock cycle time

Time Graphs

Clock cycle 1 3 4 5 6

add || IF EX | [MeEM | wB

w D || EX | [MEM

IF ID [|| EX

IF 1D

IF

iClicker

The pipeline achieves
Latency: 1, throughput: 1 instr/cycle
Latency: 5, throughput: 1 instr/cycle

Latency: 1, throughput: 1/5 instr/cycle

Latency: 5, throughput: 5 instr/cycle
E) None of the above

Time Graphs

Clock cycle 1 3 4 5 6

add || IF EX | [MeM | wB

w D || EX | [MEM

IF ||| ID || EX

IF || ID

IF

v

Latency: 5
Throughput: 1 instruction/cycle
Concurrency: 5

Pipelined Implementation

* Each instruction goes through the 5 stages

* Each stage takes one clock cycle
So slowest stage determines clock cycle time

e Stages must share information. How?

* Add pipeline registers (flip-flops) to pass results
between different stages

Pipelined Processor

register
file

control

memory

compute

N\ jump/branch
extend targets

Instruction Instruction Write-
Fetch Decode Execute Memory Back

IF/ID EX/MEM MEM/WB

Pipelined Implementation

* Each instruction goes through the 5 stages

* Each stage takes one clock cycle
So slowest stage determines clock cycle time

e Stages must share information. How?

* Add pipeline registers (flip-flops) to pass results
between different stages

And is this it? Not quite....

Hazards

3 kinds

e Structural hazards
— Multiple instructions want to use same unit

* Data hazards
— Results of instruction needed before ready

e Control hazards
— Don’t know which side of branch to take

Will get back to this
First, how to pipeline when no hazards

IF

Stage 1: Instruction Fetch

Fetch a new instruction every cycle

* Current PCis index to instruction memory

* Increment the PC at end of cycle (assume no branches for
now)

Write values of interest to pipeline register (IF/ID)
* |Instruction bits (for later decoding)

* PC+4 (for later computing branch targets)

instruction

memory
addr mc
N

PC

00 = read word

instruction
memory

addr mc

00 = read word

Rest of pipeline

1D

Stage 2: Instruction Decode

On every cycle:
* Read IF/ID pipeline register to get instruction bits
* Decode instruction, generate control signals
* Read from register file

Write values of interest to pipeline register (ID/EX)

* Control information, Rd index, immediates, offsets, ...
* Contents of Ra, Rb
* PC+4 (for computing branch targets later)

<
O
)
()
L
C
O
]
o
>
L -
o+
(%)
=
—
)
o]0)]
1°)
)
Vg

register
file

B

Ra Rb

result

PC+4|[imm

ctrl

Rest of pipeline

Stage 3: Execute

On every cycle:
* Read ID/EX pipeline register to get values and control bits
* Perform ALU operation
* Compute targets (PC+4+offset, etc.) in case this is a branch
* Decide if jump/branch should be taken

Write values of interest to pipeline register (EX/MEM)
* Control information, Rd index, ...
* Result of ALU operation
* Value in case this is a memory store instruction

aul|odid jo 1say

1938Je)

A

q | |wuw p+dd| |1

9p029Q uondNJIsu| iz 9a3eis

MEM

Stage 4: Memory

On every cycle:
* Read EX/MEM pipeline register to get values and control bits

* Perform memory load/store if needed
— address is ALU result

Write values of interest to pipeline register (MEM/WB)
* Control information, Rd index, ...
* Result of memory operation
* Pass result of ALU operation

Q
o+
>
O
)
x
L
o
Q
o]0)
1°)
o+
v

memory

MmC

Rest of pipeline

WB

Stage 5: Write-back

On every cycle:
* Read MEM/WB pipeline register for values and control bits
* Select value and write to register file

result

>
(-
@)
=
Q
=
<t
Q
o]0)
©
)
Vp)

ID/EX EX/MEM MEM/WB

Example: : Sample Code (Simple)

add r3, ril,
nand r6,
1w ra,
add r5,
SW r/,

Example: Sample Code (Simple)

Assume eight-register machine

Run the following code on a pipelined datapath
add r3rl r2 ;reg3=regl+reg?2
nand r6 r4 r5 ; regb6="(reg4 & reg5)
lw r4 20(r2) ; reg 4= Mem|reg2+20]
add r5r2 r5 ;reg5=reg2+reg5
SW r7 12(r3) ; Mem[reg3+12] =reg7

Slides thanks to Sally McKee

RO

R1

ALU
R2 result
R3

ALU

R4 mdata
result
R5

uoyonJisul

R6

Register file

R7

exteni
Bits 11-15 Rd
Bits 16-20

Rt

Bits 26-31

op op op

ID/EX EX/MEM MEM/WB

Attime 1,
Fetch

addr3rlir2

Register file

llzsgazzrrs

x

‘,, Nal el lw

o |~||a“|oo|~|‘°|m|°
|

Initial
State

nop nop

EX/MEM MEM/WB

¢ TE ppe

Register file

Fetch: Bits 11-15 e
add 312 Bits 16-20 02 0 0

Bits 26-31

npp [add nop nop

5 IF/ID ID/EX EX/MEM MEM/WB

rRol O

R1
R2| 9

R3] 12 13£1|
R4a[(18

RS;;%: ﬁ7
R6] 41
R7] 22

exteni p 9

Fetch: Bits 11-15 36
nand 645 Bits 16-20 25 g3 0
Bits 26-31

S ¥9 pueu

Register file

add npp [add nop

43 IF/ID ID/EX EX/MEM MEM/WB

Iw 4 20(2) (add 312

nand ()

18 =01 0010
/7=00 0111

0 -3=11 1101
36

9 3618
12

18 j
7

a1
22

exteni ﬁ 7

Fetch: 6
lw 4 20(2) Bits 16-20 5 B6 p3

Bits 26-31
nand] add [mand ngp |ladd

ID/EX EX/MEM MEM/WB

(2)oz ¥ M|

Register file

lw 4 20(2)

nand645

S TS ppe

Register file

0
36

9

12

18

7
41

22

Fetch: Bits 11-15

20

exteni

add525

Bits 26-31

(0]
4

6

lw

ID/EX

nandl

EX/MEM

MEM/WB

Iw 4 20 (2) nand 645

0
36
9
45
18
7
41
22

exteni 18
Fetch:

sw7 12(3) Bits 16-20 4 6
Bits 26-31

(€)et £ ms

Register file

Iw nand|

IF/ID ID/EX EX/MEM MEM/WB

Iw 4 20(2) nand 645

Register file

No more Bits 11-15
instructions

Bits 26-31

ID/EX EX/MEM MEM/WB

add525 lw 4 20(2)

rRol O
R1| 36
R2| 9
R3] 45
rR4199
Rs| 7
Re| -3
R7| 22

exteni 22
No more Bits 11-15

instructions Bits 16-20 vi
Bits 26-31

Register file

SW

ID/EX EX/MEM MEM/WB

rRol O
R1| 36
R2| 9
R3] 45
R4] 99
R5| 16,
R6] -3
R7]1 22

exteni

Register file

No more Bits 11-15
instructions Bits 16-20 7

Bits 26-31

SW

o IF/ID ID/EX EX/MEM MEM/WB

Slides thanks to Sally McKee

Register file

rRol O
R1| 36
R2| 9
R3] 45
R4] 99
R5| 16
Re| -3
R7]1 22

No more Bits 11-15

exteni

instructions Bits 16-20

Bits 21-23

ID/EX EX/MEM MEM/WB

Takeaway

Pipelining is a powerful technique to mask
latencies and increase throughput

* Logically, instructions execute one at a time

* Physically, instructions execute in parallel

— Instruction level parallelism

Abstraction promotes decoupling

* Interface (ISA) vs. implementation (Pipeline)

Hazards

See P&H Chapter: 4.7-4.8

Hazards

3 kinds
e Structural hazards

— Multiple instructions want to use same unit

 Data hazards

— Results of instruction needed before

 Control hazards
— Don’t know which side of branch to take

Data Hazards

What about data dependencies (also known as a
data hazard in a pipelined processor)?

.e. add@rl, r2
sub r5,r3) r4

Need to detect and then fix such hazards

Why do data hazards occur?

Data Hazards
* register file reads occur in stage 2 (ID)
* register file writes occur in stage 5 (WB)

* instruction may read (need) values that are being
computed further down the pipeline
— In fact this is quite common

Data Hazards
Clock cycle

1 2 3 4 5 6

addr3, r1, r2 r :D ‘MEM|_

subr5, r3, rd ID

lw r6, 4(r3)

orr5,r3,r5

sw r6, 12(r3)

\ 4

addr3, r1, r2

sub r5, r3, r4

lw r6, 4(r3)

orr5,r3,r5

sw r6, 12(r3)

iClicker

How many data hazards due to r3
only

A) 1
B) 2
C) 3
D) 4
E) 5

Data Hazards
Clock cycle r3=20

1 2 3 4 5 6 7

[|
1. add(r3) r1, r2 :D "‘"E""|‘}"’B|
ID E |— E

Data Hazards

What about data dependencies (also known as a
data hazard in a pipelined processor)?

.e. add@rl, r2
sub r5,r3) r4

How to detect?

Detecting Data Hazards

—= =
add r3,rl, r2 <

sub r5, r3, r5

orr6,r3,r4
addr6, r3, r8

detect
hazard

\

(IF/ID.rA # 0 &&
(IF/ID.rA==ID/Ex.Rd
IF/ID.rA==Ex/M.Rd
IF/ID.rA==M/W.Rd))
IF/ID ID/EX EX/MEM MEM/WB

Detecting Data Hazards

Data Hazards
* register file reads occur in stage 2 (ID)
* register file writes occur in stage 5 (WB)

* next instructions may read values about to be written
— In fact this is quite common

How to detect? (IF/ID.Ra !=0 &&

(IF/ID.Ra == ID/EX.Rd | |
IF/ID.Ra == EX/M.Rd | |
IF/ID.Ra == M/WB.Rd))

|| (same for Rb)

Next Goal

e What to do if data hazard detected?

* Options
* Nothing
* Change the ISA to match implementation

e Stall
* Pause current and subsequent instructions till safe

* Forward/bypass

 Forward data value to where it is needed

Stalling

How to stall an instruction in ID stage

 prevent IF/ID pipeline register update
— stalls the ID stage instruction

e convert ID stage instr into nop for later stages
— innocuous “bubble” passes through pipeline

* prevent PC update
— stalls the next (IF stage) instruction

Clock cycle Sta I I | ng

2 3 4

add r3,rl, r2
r3=20

Stalls

sub r5, r3, r5

orre, r3,r4 <

add r6, r3, r8

addr3,rl, r2
sub r5, r3, r5
orr6,r3,r4

add r6, r3, r8

Tt oo
f detect hazard

Detecting Data Hazards

—> < >

detect
hazard

—
S~
(ol
O

MemWr=0_>
RegWr=0

ID/EX EX/MEM MEM/WB

Stalling

>

—1A

Gdd([3r1,r2

NOP = If(IF/ID.rA £ 0 &&
|D.rA==ID/Ex.R

IF/ID.rA==Ex/M.Rd
IF/ID.rA==M/W.Rd))

Stalling

>

—1A

WiE W

RegWr=0
2| (MemWr=0
RegWr=0)

sub r5,r3,r5 @ wj
(WE=0)

/stall
NOP = If(IF/ID.rA # 0 &&

(IF/ID.rA==ID/Ex.Rd

<JF/ID.rA==Ex/M.Rd_>

IF/ID.rA==M/W.Rd))

orr6,r3,r4

inst

PC

Stal

mem P>

inst

ling

orr6,r3,r4

nop
(WE=0) _/<j

/stall
NOP = If(IF/ID.rA # 0 &&

(IF/ID.rA==ID/Ex.Rd
IF/ID.rA==Ex/M.Rd

CTF/ID.rA==M/W.RA>

A A
=2 D > D l > D ENEN
rD Bl B =
rA rB data
> BI™ mem [TIMIT
2 5 5
WiE W o o
RegWr=0 § § §
nop o (MemWr=0 = (MemWr=0 =
= EEAWE) O| RegWr=0) |O
sub r5,r3,r5 " nop &

% dd r3,rl,r

Clock cycle Sta I I | ng

2 3 4

add r3,rl, r2
r3=20

Stalls

sub r5, r3, r5

orre, r3,r4 <

add r6, r3, r8

Stalling

How to stall an instruction in ID stage

 prevent IF/ID pipeline register update
— stalls the ID stage instruction

e convert ID stage instr into nop for later stages
— innocuous “bubble” passes through pipeline

* prevent PC update
— stalls the next (IF stage) instruction

Takeaway

Data hazards occur when a operand (register) depends
on the result of a previous instruction that may not be
computed yet. A pipelined processor needs to detect
data hazards.

Stalling, preventing a dependent instruction from
advancing, is one way to resolve data hazards.

Stalling introduces NOPs (“bubbles”) into a pipeline.
Introduce NOPs by (1) preventing the PC from updating,
(2) preventing writes to IF/ID registers from changing,
and (3) preventing writes to memory and register file.
Bubbles in pipeline significantly decrease performance.

