Pipelining and Hazards

CS 3410, Spring 2014
Computer Science
Cornell University

See P&H Chapter: 4.6-4.8

Announcements

Prelim next week
Tuesday at 7:30.

Go based on netid
Prelim reviews

Friday and Sunday evening. 7:30 again.

Location: TBA on piazza
Prelim conflicts

Contact KB, Prof. Weatherspoon, Andrew Hirsch
Survey

Constructive feedback is very welcome

Administrivia

Prelim1.:
* Time: We will start at 7:30pm sharp, so come early

 Loc: Upson B17 [a-e]*, Olin 255[f-m]*, Philips 101 [n-z]*
 Closed Book

. Cannot use electronic device or outside material

* Practice prelims are online in CMS

 Material covered everything up to end of this week
 Everything up to and including data hazards
 Appendix B (logic, gates, FSMs, memory, ALUs)
 Chapter 4 (pipelined [and non] MIPS processor with hazards)
 Chapters 2 (Numbers / Arithmetic, simple MIPS instructions)
e Chapter 1 (Performance)
e HWI1, LabO, Lab1l, Lab2

Pipelining
Principle:
Throughput increased by parallel execution
Balanced pipeline very important

Else slowest stage dominates performance

Pipelining:
 |dentify pipeline stages
* |solate stages from each other
* Resolve pipeline hazards (this and next lecture)

Basic Pipeline
Five stage “RISC” load-store architecture

1. Instruction fetch (IF)
— get instruction from memory, increment PC

2. Instruction Decode (ID)
— translate opcode into control signals and read registers

3. Execute (EX)

— perform ALU operation, compute jump/branch targets

4. Memory (MEM)

— access memory if needed

5. Writeback (WB)
— update register file

Pipelined Implementation

 Each instruction goes through the 5 stages

* Each stage takes one clock cycle
* So slowest stage determines clock cycle time

Time Graphs

Clockeycle 1 2 3 4 5 6 7 8 9
add || 1F || 10 ||| Ex ||MEM|wB
w F ||| 10 || Ex ||mem| ws
F || 1D ||| Ex ||[mem||ws
i ||| 10 ||[Ex ||mem|| ws
F ||| 10 ||[Ex ||| ws

iClicker

The pipeline achieves

A) Latency: 1, throughput: 1 instr/cycle
B) Latency: 5, throughput: 1 instr/cycle
C) Latency: 1, throughput: 1/5 instr/cycle

D) Latency: 5, throughput: 5 instr/cycle
E) None of the above

Time Graphs

Clockeycle 1 2 3 4 5 6 7 8 9
add || 1F || 10 ||| Ex ||MEM|wB
w F ||| 10 || Ex ||mem| ws
F || 1D ||| Ex ||[mem||ws
i ||| 10 ||[Ex ||mem|| ws
¢ F ||| 10 ||[Ex ||| ws
Latency: 5

Throughput: 1 instruction/cycle
Concurrency: 5

Pipelined Implementation

 Each instruction goes through the 5 stages

* Each stage takes one clock cycle
* So slowest stage determines clock cycle time

e Stages must share information. How?

 Add pipeline registers (flip-flops) to pass results
between different stages

Pipelined Processor

memory register

file

control

compute
jump/branch

extend targets

Pipelined Implementation

 Each instruction goes through the 5 stages

* Each stage takes one clock cycle
* So slowest stage determines clock cycle time

e Stages must share information. How?

 Add pipeline registers (flip-flops) to pass results
between different stages

And is this it? Not quite....

Hazards
3 kinds

e Structural hazards
— Multiple instructions want to use same unit

 Data hazards
— Results of instruction needed before ready

e Control hazards
— Don’t know which side of branch to take

Will get back to this
First, how to pipeline when no hazards

IF

Stage 1: Instruction Fetch

Fetch a new instruction every cycle

* Current PCis index to instruction memory

* Increment the PC at end of cycle (assume no branches for
now)

Write values of interest to pipeline register (IF/ID)
* |nstruction bits (for later decoding)
 PC+4 (for later computing branch targets)

IF

instruction

memory
addr mc
N

._} L 00 = read word

PC I

IF

instruction
memory
addr mc
7 Q
i 2
00 = read word g
o
G
o
)
(V)]
Q
o
o ___bcreg ___ __________
R oY crel__
____________ pcabs_ _ _ ___

ID

Stage 2: Instruction Decode

On every cycle:

* Read IF/ID pipeline register to get instruction bits
* Decode instruction, generate control signals
* Read from register file

Write values of interest to pipeline register (ID/EX)
e Control information, Rd index, immediates, offsets, ...
* Contents of Ra, Rb
 PC+4 (for computing branch targets later)

dest
A
register
% file B
Ra R
= 7 o
5 | =
S -1
= l -
o
C
— extend T
i Q
3 (a'et
(o]0)
5
(V]

IF/ID ID/EX

EX

Stage 3: Execute

On every cycle:
* Read ID/EX pipeline register to get values and control bits
* Perform ALU operation
 Compute targets (PC+4+offset, etc.) in case this is a branch
* Decide if jump/branch should be taken

Write values of interest to pipeline register (EX/MEM)
e Control information, Rd index, ...
* Result of ALU operation
* Value in case this is a memory store instruction

pcreg

N > alu

]

©

@)

O

8 / 4
= ' > i <
o L~ I
B i o
S ! o
— Y—
j (@]
= &
.. 0]
& pcrel o
)

oo

O

AN pcabs

ID/EX EX/MEM

MEM

Stage 4: Memory

On every cycle:

 Read EX/MEM pipeline register to get values and control bits

e Perform memory load/store if needed
— address is ALU result

Write values of interest to pipeline register (MEM/WB)
e Control information, Rd indey, ...
e Result of memory operation
* Pass result of ALU operation

pcreg

Q
E =
L% addr .g_
(;n' > d dout &

o
&0 o
e pcrel memory nch
wn
MC
pcabs

 EX/MEM MEM/WB

<€

<€

WB

Stage 5: Write-back

On every cycle:

 Read MEM/WB pipeline register for values and control bits
* Select value and write to register file

result

Stage 4: Memory

MEM/WB

WB

inst
mem

TTTe

IF/ID

ID/EX

EX/MEM

MEM/WB

Example: : Sample Code (Simple)

add r3, rl, r2;
nand ré6, r4, rb5;
1w r4, 20(r2);
add r5, r2, r5;
SW r7, 12(r3);

Example: Sample Code (Simple)

Assume eight-register machine

Run the following code on a pipelined datapath
add r3rl r2 ;reg3=regl+reg?2
nand r6 r4 r5 ; regb6="(reg4 & reg5)
lw r4 20(r2) ; reg4 = Mem|reg2+20]
add r5r2 r5 ;reg5=reg2+reg5
SW r7 12(r3) ; Mem[reg3+12] =reg7

Slides thanks to Sally McKee

o /7=2\

PC

N

RO
—_ regA it
>
43 regB R2
a
c R3
8_ * R4
o
3 . R5
R6
R7
extend
Bits 11-15
Bits 16-20
Bits 26-31

IF/ID

ALU
result M
U
mdata X
data
dest

ID/EX

EX/MEM

MEM/WB

At time 1,

Fetch
addr3rlr2
1
u
N
4]
RO
r1|36 .
—— | 9] \ M
- . 12 U
PC - m|18 j . X
Rs| 7
-> r6| 41 DS /
R7| 22 X data
extend dest
Initial Bits 11-15 N
State Bits 16-20 }J .
Bits 26-31

IF/ID ID/EX EX/MEM MEM/WB

-l
]
X
N
4 U
U
o \ M
o || — U
[w X
PC w -> j .
| > M
U /
X data
dest
U
Fetch: Bits 11-15 hﬁ
add312 Bits 16-20 }UJ N
Bits 26-31 ‘

15 IF/ID ID/EX EX/MEM MEM/WB

<4
]
N
4
0
2 \ M
Q U
—| PC o X
S
u M
U /
X data
dest
Fetch: Bits 11-15 hﬁ 3
nand 645 Bits 16-20 }UJ
Bits 26-31 ,<

JMaad

43 IF/ID ID/EX EX/MEM MEM/WB

Iw 420(2) dd 312>

7
U nand ()
X
AN
18 =01 0010
4 7=00 0111
RO -3=11 1101
4 R1| 36
5 R2 0 18 I\le
-1 pC - [X
->
data
Fetch: Bits 11-15
lw 4 20(2) Bits 16-20
Bits 26-31

44 IF/ID ID/EX EX/MEM MEM/WB

add525 Iw 4 20(2) nand 645 add 312

M
u
A
4
RO
0
) R1] 36
8 ” r2| 9 18 M
_ - el 12 y
PC S =P R4|18 45 5
" _> Rs| 7 7 M
RGﬂ U
rR7| 22 X data
' dest
Fetch: Bits 11-15 . 6 6 3
add525 Bits 16-20 / 5 |V
Bits 26-31
~ . IF/ID ID/EX EX/MEM MEM/WB

sw 7 12(3) add525 Iw 4 20 (2) nand 645 add 312

M
U
N
4
RO
) rR1| 36 '
5 R2| 9 9
! o]
PC - 18 |
Rs| 7
M
ad U
R7| 22 20| x
Fetch: Bits 11-15 0 . 6
sw7 12(3) Bits 16-20 4 |v 4
Bits 26-31
ID/EX EX/MEM
Time: 5 IF/ I D / /

o /7=2\

No more

instructions

Time

16

IF/ID

sw 7 12(3)

add525

RO
3 R1| 36
2 R2] 9
R3] 45
=) R4|18
- RS

7
R6
R7

Bits 11-15

< C

Bits 16-20

Bits 26-31

ID/EX

Iw 4 20(2) nand 645
. M
U
X
29
data
dest
5 4
EX/MEM MEM/WB

nop nop sw 7 12(3) add525 Iw 4 20(2)

l
U
N
4 0
RO
r1|36 U
— R 9 45 M
— R3|45 g
—| PC
- - naf) 16
Rs| 7
-} M
Ré6| -3 U
R7| 22 12| X data
dest
No more Bits 11-15 0 7 5
instructions Bits 16-20 7 |V
Bits 26-31

~ IF/ID ID/EX EX/MEM MEM/WB

sw 7 12(3) add 525

x Cc <Z

data
dest

nop nop nop
-l
U
N
4
RO
R1| 36
. rR2| 9
| — R3|45
PC - - ra|99 L
=) .16 M
Re| -3 U
R7| 22 X
22
No more Bits 11-15 M
instructions Bits 16-20 }UJ
Bits 26-31
ID/EX EX/MEM
Time: 8 IF/ ID / /

Slides thanks to Sally McKee

MEM/WB

nop nop

nop nop sw 7 12(3)

RO
R1
R2
R3
R4
R5
R6
R7

36

45

99

16

22

M
u
X

data

cC

b

A
U
N
4
=1 PC
->
->
No more Bits 11-15
instructions Bits 16-20
Bits 21-23

X</

IF/ID

Time: 9

ID/EX EX/MEM MEM/WB

Takeaway

Pipelining is a powerful technique to mask
latencies and increase throughput

* Logically, instructions execute one at a time

* Physically, instructions execute in parallel
— Instruction level parallelism

Abstraction promotes decoupling

* Interface (ISA) vs. implementation (Pipeline)

Hazards

See P&H Chapter: 4.7-4.8

Hazards

3 kinds
e Structural hazards

— Multiple instructions want to use same unit

e Data hazards

— Results of instruction needed before

e Control hazards
— Don’t know which side of branch to take

Data Hazards

What about data dependencies (also known as a
data hazard in a pipelined processor)?

.e. add@rl, r2
sub rS,@ r4

Need to detect and then fix such hazards

Why do data hazards occur?

Data Hazards
* register file reads occur in stage 2 (ID)
 register file writes occur in stage 5 (WB)

* instruction may read (need) values that are being
computed further down the pipeline
— In fact this is quite common

Data Hazards
time Clock cycle

1 2 3 4 5 6 7 8 9

N
0 |
add r3, r1, r2| LEITLP |>/ MEMHWE
IF Ir ID :>> }VIE WB

o O M
CeF) ko

N
sw r6, 12(r3) IF [{1'D |>/ "‘"E""‘

\4

add r3, r1, r2

sub r5, r3, r4

lw r6, 4(r3)

orr5,r3,r5

sw r6, 12(r3)

iClicker

How many data hazards due to r3
only

A) 1
B) 2
C) 3
D) 4
E) 5

Data Hazards

Clock cycle

1

2

3

4

<€

r3=10

r3 =20

5

6

7/

>

3

9

8

IFI

ID

|F|

|F|

ID

‘MEM‘

WB

Data Hazards

What about data dependencies (also known as a
data hazard in a pipelined processor)?

.e. add@rl, r2
sub rS,@ r4

How to detect?

Detecting Data Hazards

addr3,rl, r2
sub r5, r3, r5

orr6,r3,r4
addr6, r3, r8

_..
m.»

detect
hazard

(IF/ID.rA # 0 &&

(IF/ID.rA==ID/Ex.Rd

IF/ID.rA==Ex/M.Rd

IF/ID.rA==M/W.Rd))

D/EX EX/MEM MEM/WB

Detecting Data Hazards

Data Hazards
* register file reads occur in stage 2 (ID)
 register file writes occur in stage 5 (WB)

* next instructions may read values about to be written
— In fact this is quite common

How to detect? (IF/ID.Ra!=0&&

(IF/ID.Ra == ID/EX.Rd | |
IF/ID.Ra == EX/M.Rd | |
IF/ID.Ra == M/WB.Rd))

|| (same for Rb)

Next Goal

e What to do if data hazard detected?

* Options
* Nothing
 Change the ISA to match implementation

e Stall
* Pause current and subsequent instructions till safe

* Forward/bypass

e Forward data value to where it is needed

Stalling

How to stall an instruction in ID stage

 prevent IF/ID pipeline register update
— stalls the ID stage instruction

e convert ID stage instr into nop for later stages
— innocuous “bubble” passes through pipeline

* prevent PC update
— stalls the next (IF stage) instruction

time

r3 =10

add r3, r1,

r3 =20

sub r5, r3,

orre6, r3,

add r6, r3,

>

1

Clock cycle

2

3

4

Stalling

IF |ID |Ex |M | W
3 |Stalls

IF XD | ID | IDDVID |Ex |M |W

IF <E_|IF | IEX ID| Ex | M

IF | ID | Ex

Detecting Data Hazards

addr3,rl, r2
sub r5, r3, r5

orr6,r3,r4
addr6, r3, r8

MemWr=0
RegWr=0

ID/EX EX/MEM

AN

Stalling

(MemWr=0
RegWr=0

Gop>Pp

Op | WE

sub

(WE=0)

/stall

rs@j @

NOP = If(IF/ID.rA 20 &
/ID.rA==ID/Ex.R

IF/ID.rA==Ex/M.Rd
IF/ID.rA==M/W.Rd))

Op | WE

AN

Stalling

(MemWr=0

RegWr=0
N (MemWr=0

Op | WE
Op | WE

sub

Bop>> A
S Reg\Wr=0)

(WE=0)

/stall

NOP = If(IF/ID.rA # 0 &&

(IF/ID.rA==ID/Ex.Rd

JF/ID.rA==Ex/M.Rd_>

IF/ID.rA==M/W.Rd))

Stalling

(MemWr=0

RegWr=0
N (MemWr=0 (MemWr=0

. P> S
RegWr=0) RegWr=0)
sub r5,r3,rij m m @

Op | WE
Op | WE

(WE=0)

/stall

NOP = If(IF/ID.rA # 0 &&
(IF/1D.rA==ID/Ex.Rd
IF/ID.rA==Ex/M.Rd

<TF/ID.rA==M/W.RA]>

time

r3 =10

add r3, r1,

r3 =20

sub r5, r3,

orre6, r3,

add r6, r3,

>

1

Clock cycle

2

3

4

Stalling

IF |ID |Ex |M | W
3 |Stalls

IF XD | ID | IDDVID |Ex |M |W

IF <E_|IF | IEX ID| Ex | M

IF | ID | Ex

Stalling

How to stall an instruction in ID stage

* prevent IF/ID pipeline register update
— stalls the ID stage instruction

e convert ID stage instr into nop for later stages
— innocuous “bubble” passes through pipeline

* prevent PC update
— stalls the next (IF stage) instruction

Takeaway

Data hazards occur when a operand (register) depends
on the result of a previous instruction that may not be
computed yet. A pipelined processor needs to detect
data hazards.

Stalling, preventing a dependent instruction from
advancing, is one way to resolve data hazards.

Stalling introduces NOPs (“bubbles”) into a pipeline.
Introduce NOPs by (1) preventing the PC from updating,
(2) preventing writes to IF/ID registers from changing,
and (3) preventing writes to memory and register file.
Bubbles in pipeline significantly decrease performance.

