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See P&H Chapter: 4.6-4.8



Announcements

Prelim next week
Tuesday at 7:30.

Go based on netid
Prelim reviews

Friday and Sunday evening. 7:30 again.

Location: TBA on piazza
Prelim conflicts

Contact KB, Prof. Weatherspoon, Andrew Hirsch
Survey

Constructive feedback is very welcome



Administrivia

Prelim1.:
* Time: We will start at 7:30pm sharp, so come early

 Loc: Upson B17 [a-e]*, Olin 255[f-m]*, Philips 101 [n-z]*
 Closed Book

. Cannot use electronic device or outside material

* Practice prelims are online in CMS

 Material covered everything up to end of this week
 Everything up to and including data hazards
 Appendix B (logic, gates, FSMs, memory, ALUs)
 Chapter 4 (pipelined [and non] MIPS processor with hazards)
 Chapters 2 (Numbers / Arithmetic, simple MIPS instructions)
e Chapter 1 (Performance)
e HWI1, LabO, Lab1l, Lab2



Pipelining
Principle:
Throughput increased by parallel execution
Balanced pipeline very important

Else slowest stage dominates performance

Pipelining:
 |dentify pipeline stages
* |solate stages from each other
* Resolve pipeline hazards (this and next lecture)



Basic Pipeline
Five stage “RISC” load-store architecture

1. Instruction fetch (IF)
— get instruction from memory, increment PC

2. Instruction Decode (ID)
— translate opcode into control signals and read registers

3. Execute (EX)

— perform ALU operation, compute jump/branch targets

4. Memory (MEM)

— access memory if needed

5. Writeback (WB)
— update register file



Pipelined Implementation

 Each instruction goes through the 5 stages

* Each stage takes one clock cycle
* So slowest stage determines clock cycle time



Time Graphs

Clockeycle 1 2 3 4 5 6 7 8 9
add || 1F || 10 ||| Ex ||MEM|wB
w F ||| 10 || Ex ||mem| ws
F || 1D ||| Ex ||[mem||ws
i ||| 10 ||[ Ex ||mem|| ws
F ||| 10 ||[ Ex ||| ws




iClicker

The pipeline achieves

A) Latency: 1, throughput: 1 instr/cycle
B) Latency: 5, throughput: 1 instr/cycle
C) Latency: 1, throughput: 1/5 instr/cycle

D) Latency: 5, throughput: 5 instr/cycle
E) None of the above



Time Graphs

Clockeycle 1 2 3 4 5 6 7 8 9
add || 1F || 10 ||| Ex ||MEM|wB
w F ||| 10 || Ex ||mem| ws
F || 1D ||| Ex ||[mem||ws
i ||| 10 ||[ Ex ||mem|| ws
¢ F ||| 10 ||[ Ex ||| ws
Latency: 5

Throughput: 1 instruction/cycle
Concurrency: 5




Pipelined Implementation

 Each instruction goes through the 5 stages

* Each stage takes one clock cycle
* So slowest stage determines clock cycle time

e Stages must share information. How?

 Add pipeline registers (flip-flops) to pass results
between different stages



Pipelined Processor
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Pipelined Implementation

 Each instruction goes through the 5 stages

* Each stage takes one clock cycle
* So slowest stage determines clock cycle time

e Stages must share information. How?

 Add pipeline registers (flip-flops) to pass results
between different stages

And is this it? Not quite....



Hazards
3 kinds

e Structural hazards
— Multiple instructions want to use same unit

 Data hazards
— Results of instruction needed before ready

e Control hazards
— Don’t know which side of branch to take

Will get back to this
First, how to pipeline when no hazards



IF

Stage 1: Instruction Fetch

Fetch a new instruction every cycle

* Current PCis index to instruction memory

* Increment the PC at end of cycle (assume no branches for
now)

Write values of interest to pipeline register (IF/ID)
* |nstruction bits (for later decoding)
 PC+4 (for later computing branch targets)
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ID

Stage 2: Instruction Decode

On every cycle:

* Read IF/ID pipeline register to get instruction bits
* Decode instruction, generate control signals
* Read from register file

Write values of interest to pipeline register (ID/EX)
e Control information, Rd index, immediates, offsets, ...
* Contents of Ra, Rb
 PC+4 (for computing branch targets later)
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EX

Stage 3: Execute

On every cycle:
* Read ID/EX pipeline register to get values and control bits
* Perform ALU operation
 Compute targets (PC+4+offset, etc.) in case this is a branch
* Decide if jump/branch should be taken

Write values of interest to pipeline register (EX/MEM)
e Control information, Rd index, ...
* Result of ALU operation
* Value in case this is a memory store instruction
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MEM

Stage 4: Memory

On every cycle:

 Read EX/MEM pipeline register to get values and control bits

e Perform memory load/store if needed
— address is ALU result

Write values of interest to pipeline register (MEM/WB)
e Control information, Rd indey, ...
e Result of memory operation
* Pass result of ALU operation
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WB

Stage 5: Write-back

On every cycle:

 Read MEM/WB pipeline register for values and control bits
* Select value and write to register file
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Example: : Sample Code (Simple)

add r3, rl, r2;
nand ré6, r4, rb5;
1w r4, 20(r2);
add r5, r2, r5;
SW r7, 12(r3);



Example: Sample Code (Simple)

Assume eight-register machine

Run the following code on a pipelined datapath
add r3rl r2 ;reg3=regl+reg?2
nand r6 r4 r5 ; regb6="(reg4 & reg5)
lw r4 20(r2) ; reg4 = Mem|reg2+20]
add r5r2 r5 ;reg5=reg2+reg5
SW r7 12(r3) ; Mem[reg3+12] =reg7

Slides thanks to Sally McKee
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At time 1,
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Takeaway

Pipelining is a powerful technique to mask
latencies and increase throughput

* Logically, instructions execute one at a time

* Physically, instructions execute in parallel
— Instruction level parallelism

Abstraction promotes decoupling

* Interface (ISA) vs. implementation (Pipeline)



Hazards

See P&H Chapter: 4.7-4.8



Hazards

3 kinds
e Structural hazards

— Multiple instructions want to use same unit

e Data hazards

— Results of instruction needed before

e Control hazards
— Don’t know which side of branch to take



Data Hazards

What about data dependencies (also known as a
data hazard in a pipelined processor)?

.e. add@rl, r2
sub rS,@ r4

Need to detect and then fix such hazards



Why do data hazards occur?

Data Hazards
* register file reads occur in stage 2 (ID)
 register file writes occur in stage 5 (WB)

* instruction may read (need) values that are being
computed further down the pipeline
— In fact this is quite common



Data Hazards
time Clock cycle
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add r3, r1, r2

sub r5, r3, r4

lw r6, 4(r3)

orr5,r3,r5

sw r6, 12(r3)

iClicker

How many data hazards due to r3
only

A) 1
B) 2
C) 3
D) 4
E) 5



Data Hazards
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Data Hazards

What about data dependencies (also known as a
data hazard in a pipelined processor)?

.e. add@rl, r2
sub rS,@ r4

How to detect?



Detecting Data Hazards

addr3,rl, r2
sub r5, r3, r5

orr6,r3,r4
addr6, r3, r8

_..
m.»

detect
hazard

(IF/ID.rA # 0 &&

(IF/ID.rA==ID/Ex.Rd

IF/ID.rA==Ex/M.Rd

IF/ID.rA==M/W.Rd))

D/EX EX/MEM MEM/WB




Detecting Data Hazards

Data Hazards
* register file reads occur in stage 2 (ID)
 register file writes occur in stage 5 (WB)

* next instructions may read values about to be written
— In fact this is quite common

How to detect? (IF/ID.Ra!=0&&

(IF/ID.Ra == ID/EX.Rd | |
IF/ID.Ra == EX/M.Rd | |
IF/ID.Ra == M/WB.Rd))

|| (same for Rb)



Next Goal

e What to do if data hazard detected?

* Options
* Nothing
 Change the ISA to match implementation

e Stall
* Pause current and subsequent instructions till safe

* Forward/bypass

e Forward data value to where it is needed



Stalling

How to stall an instruction in ID stage

 prevent IF/ID pipeline register update
— stalls the ID stage instruction

e convert ID stage instr into nop for later stages
— innocuous “bubble” passes through pipeline

* prevent PC update
— stalls the next (IF stage) instruction
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IF |ID |Ex |M | W
3 |Stalls

IF XD | ID | IDDVID |Ex |M |W

IF <E_|IF | IEX ID| Ex | M

IF | ID | Ex




Detecting Data Hazards

addr3,rl, r2
sub r5, r3, r5

orr6,r3,r4
addr6, r3, r8

MemWr=0
RegWr=0

ID/EX EX/MEM
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Stalling
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Stalling
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Stalling
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Stalling

How to stall an instruction in ID stage

* prevent IF/ID pipeline register update
— stalls the ID stage instruction

e convert ID stage instr into nop for later stages
— innocuous “bubble” passes through pipeline

* prevent PC update
— stalls the next (IF stage) instruction



Takeaway

Data hazards occur when a operand (register) depends
on the result of a previous instruction that may not be
computed yet. A pipelined processor needs to detect
data hazards.

Stalling, preventing a dependent instruction from
advancing, is one way to resolve data hazards.

Stalling introduces NOPs (“bubbles”) into a pipeline.
Introduce NOPs by (1) preventing the PC from updating,
(2) preventing writes to IF/ID registers from changing,
and (3) preventing writes to memory and register file.
Bubbles in pipeline significantly decrease performance.






