Pipelining and Hazards

CS 3410, Spring 2014
Computer Science
Cornell University

See P&H Chapter: 4.6-4.8

Announcements

Prelim next week
Tuesday at 7:30.
Upson B17 [a-e]*, Olin 255[f-m]*, Philips 101 [n-z]*
Go based on netid
Prelim reviews
Friday and Sunday evening. 7:30 again.
Location: TBA on piazza
Prelim conflicts
Contact KB, Prof. Weatherspoon, Andrew Hirsch
Survey
Constructive feedback is very welcome

Administrivia

Prelim1:

Time: We will start at 7:30pm sharp, so come early

Loc: Upson B17 [a-e]*, Olin 255[f-m]*, Philips 101 [n-z]*
Closed Book

* Cannot use electronic device or outside material

Practice prelims are online in CMS

Material covered everything up to end of this week

* Everything up to and including data hazards

* Appendix B (logic, gates, FSMs, memory, ALUs)

* Chapter 4 (pipelined [and non] MIPS processor with hazards)
* Chapters 2 (Numbers / Arithmetic, simple MIPS instructions)
* Chapter 1 (Performance)

* HWI1, Lab0, Lab1l, Lab2

Pipelining
Principle:
Throughput increased by parallel execution
Balanced pipeline very important

Else slowest stage dominates performance

Pipelining:
* |dentify pipeline stages
* |solate stages from each other
* Resolve pipeline hazards (this and next lecture)

Basic Pipeline
Five stage “RISC” load-store architecture

1. Instruction fetch (IF)
— get instruction from memory, increment PC

2. Instruction Decode (ID)
— translate opcode into control signals and read registers

3. Execute (EX)

— perform ALU operation, compute jump/branch targets
4. Memory (MEM)

— access memory if needed
5. Writeback (WB)

— update register file

This is simpler than the MIPS, but we’re using it to get the concepts across —
everything you see here applies to MIPS, but we have to deal w/ fewer bits in
these examples (that’s why I like them)

Pipelined Implementation

Each instruction goes through the 5 stages

* Each stage takes one clock cycle
So slowest stage determines clock cycle time

Time Graphs

Clockeycle 1 2 3 4 5 6 7 8 9
add | 1F || 1D || Ex ||vem||we
Iw iF || 1o || ex ||vem|[ws
i ||| 1D ||| ex |[mem||| we
iF || 1o || ex ||jvem|{we
iF ||| 10 ||[Ex ||mem|{we

CPI =1 (inverse of throughput)

iClicker

The pipeline achieves

A) Latency: 1, throughput: 1 instr/cycle
B) Latency: 5, throughput: 1 instr/cycle
C) Latency: 1, throughput: 1/5 instr/cycle
D) Latency: 5, throughput: 5 instr/cycle
E) None of the above

Answer: B

Time Graphs

Throughput: 1 instruction/cycle
Concurrency: 5

Clockeyce 1 2 3 4 5 6 7 8 9
add || IF || 1D ||| Ex ||jmem|[we
Iw iF || 1o || ex ||vem|[ws
i ||| 1D ||| ex |[mem||| we
iF || 1o || ex ||jvem|{we
iF ||| 10 ||[Ex ||mem|{we
Latency: 5

CPI =1 (inverse of throughput)

Pipelined Implementation

* Each instruction goes through the 5 stages

* Each stage takes one clock cycle
* So slowest stage determines clock cycle time

» Stages must share information. How?
* Add pipeline registers (flip-flops) to pass results
between different stages

Pipelined Processor

P
memory register T
file

compute
jump/branch
targets

IF/ID ID/EX EX/MEM MEM/WB

Pipelined Implementation

* Each instruction goes through the 5 stages

* Each stage takes one clock cycle
* So slowest stage determines clock cycle time

» Stages must share information. How?
* Add pipeline registers (flip-flops) to pass results
between different stages

And is this it? Not quite....

1)

2)

3)

Hazards
3 kinds

* Structural hazards
— Multiple instructions want to use same unit

* Data hazards
— Results of instruction needed before ready

* Control hazards
— Don’t know which side of branch to take

Will get back to this
First, how to pipeline when no hazards

Structural: say only 1 memory for instruction read and the MEM stage. That is a
structural hazard. We have designed the MIPS ISA and our implementation of
separate memory for instruction and data to avoid this problem. MIPS is designed
very carefully to not have any structural hazards.

Data hazards arise when data needed by one instruction has not yet been
computed (because it is further down the pipeline). We need a solution for this.

Control hazards arise when we don’t know what the PC will be. This makes it not
possible to push the next instruction down the pipeline. Till we know what the
issue is.

13

IF

Stage 1: Instruction Fetch

Fetch a new instruction every cycle
* Current PCis index to instruction memory

* Increment the PC at end of cycle (assume no branches for
now)

Write values of interest to pipeline register (IF/ID)
* Instruction bits (for later decoding)
* PC+4 (for later computing branch targets)

instruction

memory
addr mc

IF

L

00 = read word

v

v

15

IF

instruction
memory
addr mc
Q
T_ =
ﬁ 00 = read word 2
a
(-
o
> 4
v
Q
o

ID

Stage 2: Instruction Decode

On every cycle:
* Read IF/ID pipeline register to get instruction bits
* Decode instruction, generate control signals
* Read from register file

Write values of interest to pipeline register (ID/EX)
* Control information, Rd index, immediates, offsets, ...
* Contents of Ra, Rb
* PC+4 (for computing branch targets later)

result

ID I ICIIIIIIIIIIIIIIIIIIIIII I]

1
: : |)
L e—o
:L__-_>\QQE _ A
L s|p resister
file B
Ra Rb

decode

v

extend

L=
O
-
()
L
C
o
5
)
>
e
4
[%]
=
—
()
oo
©
o+
(%]

IF/ID

ID/EX

Q
5
Q
Q.
o
Y
o
+
(%]
[}
o

Read in the first half, write in the second half. Later we will change this.

18

EX

Stage 3: Execute

On every cycle:
* Read ID/EX pipeline register to get values and control bits
* Perform ALU operation
* Compute targets (PC+4+offset, etc.) in case this is a branch
* Decide if jump/branch should be taken

Write values of interest to pipeline register (EX/MEM)
¢ Control information, Rd index, ...
* Result of ALU operation
* Value in case this is a memory store instruction

EX
pcreg
w
© N
o
O
a v
c } £
g 7 3
G s
= o
— Y
“ (e]
= =
A pcrel o
o
Q0
©
A pcabs R
ID/EX EX/MEM

Pcreg: from a register j Ss
Pcrel: from branch instructions, relative to the PC
Pcabs: absolute from j Label or jalr Label

In this case ctrl stores the target register
D is the final result

MEM

Stage 4: Memory

On every cycle:
* Read EX/MEM pipeline register to get values and control bits

* Perform memory load/store if needed
— address is ALU result

Write values of interest to pipeline register (MEM/WB)
¢ Control information, Rd index, ...
* Result of memory operation
* Pass result of ALU operation

2

memory

mc

Q
5
Q
Q.
o
Y
o
+
(%]
[}
o

(0]
)
=]
)
9]
x
i
)
Q
o0
ol pcrel
V)
pcabs
FX/RAFRA

»3

<
<

MEM/WB

From D you get sw or Iw address in memory.

If sw, then B has the data to store.
D_out has the output Iw result.

22

WB

Stage 5: Write-back

On every cycle:
* Read MEM/WSB pipeline register for values and control bits
* Select value and write to register file

result

Stage 4: Memory

MEM/WB

WB

24

inst
mem

IF/ID

\ A

ID/EX

EX/MEM

MEM/WB

25

Example: : Sample Code (Simple)

add r3, rl, r2;
nand re6, r4, r5;
1w r4, 20(r2);
add r5, r2, r5;
SW r7, 12(r3);

Example: Sample Code (Simple)

Assume eight-register machine
Run the following code on a pipelined datapath
add r3rl r2 ;reg3=regl+reg?2
nand r6 r4 r5 ; reg6="(reg4 ®h)
w r4 20(r2) ; regd4= Mem[reg2+20]
add r5 r2 r5 ; reg5=reg2+reg5
SW r7 12(r3) ; Mem[reg3+12] =reg7

Slides thanks to Sally McKee

5
a
c
=3
o
3

IF/ID

ID/EX

EX/MEM

MEM/WB

Attime 1,
Fetch

addr3rlr

IF/ID ID/EX EX/MEM MEM/WB

Nop is no operation.

Fetch:
add312

Time: 42

Z 1€ ppe

IF/ID

ID/EX

EX/MEM

MEM/WB

Qand 645> ~~\(add 31D

S 9 pueu

Fetch:
nand 645

ECCRRand

43 IF/ID ID/EX EX/MEM MEM/WB

nand ()

18 =01 0010
7=00 0111

(2)oz v m|

Fetch:
lw 4 20(2)

IF/ID ID/EX EX/MEM MEM/WB

Time: 84

Ox 000111

Ox 10 0010

And =10

Nand =11111 1101

add525 lw 4 20(2) nand 645 add312

Fetch:
add525

IF/ID ID/EX EX/MEM MEM/WB

Time: 4

sw712(3) add525 lw 420 (2) nand 645 add 312

(€)zT £ ms

Fetch:
sw 7 12(3)

. IF/D ID/EX EX/MEM MEM/WB

sw 7 12(3) add525 lw 4 20(2) nand 645

No more
instructions

IF/ID

Time: 6

ID/EX EX/MEM MEM/WB

nop sw712(3) add525 Iw 4 20(2)

No more
instructions

IF/ID

Time: 7

ID/EX EX/MEM MEM/WB

nop nop nop sw712(3) add 525

No more
instructions

IF/ID ID/EX EX/MEM MEM/WB

Time: 8

Slides thanks to Sally McKee

nop

nop

No more
instructions

Time: 9

nop

sw712(3)

IF/ID ID/EX

EX/MEM

MEM/WB

Takeaway

Pipelining is a powerful technigue to mask
latencies and increase throughput

* Logically, instructions execute one at a time

* Physically, instructions execute in parallel
— Instruction level parallelism

Abstraction promotes decoupling
* Interface (ISA) vs. implementation (Pipeline)

TALK ABOUT GPUs: 800 deep pipelines

Hazards

See P&H Chapter: 4.7-4.8

40

1)

2)

3)

Hazards

3 kinds
e Structural hazards

— Multiple instructions want to use same unit

* Data hazards

— Results of instruction needed before

* Control hazards

— Don’t know which side of branch to take

Structural: say only 1 memory for instruction read and the MEM stage. That is a
structural hazard. We have designed the MIPS ISA and our implementation of
separate memory for instruction and data to avoid this problem. MIPS is designed
very carefully to not have any structural hazards.

Data hazards arise when data needed by one instruction has not yet been
computed (because it is further down the pipeline). We need a solution for this.

Control hazards arise when we don’t know what the PC will be. This makes it not
possible to push the next instruction down the pipeline. Till we know what the
issue is.

41

Data Hazards

What about data dependencies (also known as a
data hazard in a pipelined processor)?

i.e. add@rl, r2

sub r5,(r3) r4

Need to detect and then fix such hazards

42

Why do data hazards occur?

Data Hazards
* register file reads occur in stage 2 (ID)
* register file writes occur in stage 5 (WB)

* instruction may read (need) values that are being
computed further down the pipeline
—In fact this is quite common

assumes (WE=0 implies rD=0) everywhere, similar for rA needed, rB needed
(can ensure this in ID stage)

time

addr3,rl, r2

subr5,r3,r4

Iwr6, 4(r3)

orr5,r3,r5

sw r6, 12(r3)

Data Hazards

Clock cycle
1 2 3 4 5 6 7 8 9 R
() e
v i gqpm--ws
e o ;g*ﬁ%ws
. E:Durvlﬂvr—ws
| F [o -$’+lmzm-—WB

#1 and #2
#1 and #3
#1 and #4 (r3)

#2 and #4
#3 and #5

addr3,rl, r2

subr5,r3, r4

Iw r6, 4(r3)

orr5,r3,r5

swr6, 12(r3)

iClicker

How many data hazards due to r3
only

A) 1
B) 2
C) 3
D) 4
E) 5

45

Data Hazards

time Clock cycle r3=10 r3=20
> 1 2 3 455 § 7.8 9
F {10 :ﬁ-ﬂ@-w
-
r3 =1
e H o | MHws
3 = 1d
i fif 1D || *AE%WB
B =10
IF E:@-MEM—WB
| F {1 &-ﬂmm-—wa

#1 and #2
#1 and #3
#1 and #4 (r3) Can’t go backward in time.

#2 and #4
#3 and #5

Data Hazards

What about data dependencies (also known as a
data hazard in a pipelined processor)?

i.e. add@rl, r2

sub r5,(r3) r4

How to detect?

47

Detecting Data Hazards

addr3,rl, r2
subr5, r3,r5

orr6,r3,r4
addre6, r3,r8

detect
haza rd

(IF/ID.rA # 0 &&
| (IF/ID.rA==1D/Ex.Rd
IF/ID.rA==Ex/M.Rd

IF/ID.rA==M/W.Rd))

STES

Rt Rd | PC+4

EX/MEM MEM/WB

48

Detecting Data Hazards

Data Hazards
* register file reads occur in stage 2 (ID)
* register file writes occur in stage 5 (WB)

* next instructions may read values about to be written
— In fact this is quite common

How to detect? (IF/ID.Ra!=0&&

(IF/ID.Ra == ID/EX.Rd | |
IF/ID.Ra == EX/M.Rd | |
IF/ID.Ra == M/WB.Rd))

|| (same for Rb)

assumes (WE=0 implies rD=0) everywhere, similar for rA needed, rB needed
(can ensure this in ID stage)

Next Goal

* What to do if data hazard detected?

* Options
* Nothing
* Change the ISA to match implementation
e Stall

* Pause current and subsequent instructions till safe

* Forward/bypass
e Forward data value to where it is needed

Nothing: Modify ISA to match implementation (not great as an option,
violates abstraction. Requires restructuring by application. Might not always
be possible).

Stall: Pause current and all subsequent instruction

Forward/Bypass: Steal correct value from elsewhere in pipeline

Stalling

How to stall an instruction in ID stage
* prevent IF/ID pipeline register update
— stalls the ID stage instruction
* convert ID stage instr into nop for later stages
— innocuous “bubble” passes through pipeline

* prevent PC update
— stalls the next (IF stage) instruction

prev slide:
Q: what happens if branch in EX?
A: bad stuff: we miss the branch

So: lets try not to stall

51

time 3

r3=10
addr3,rl,r2

r3 =20

subr5,r3,r5

orr6,r3,rd

addr6,r3,r8

1

Clock cycle
2

Stalling

3

4

v

IF | ID |Ex | M Ww
Stalls x

IF ID ID |[Ex |M |W

IF IF ID | Ex | M

IF | ID |Ex

find hazards first, then draw

IMPORTANT: Arrows can only go forward in time.

addr3,rl, r2
subr5, r3,r5
orr6,r3,r4

addre6, r3,r8

Detecting Data Hazards

<
Rd A
D D
3 d e
c Ra Rb
€ 2
detect

hazard

im

Rt Rd | PC+4

GED
(detect hazar Y

a
@)

©)

MemWr=0Q
RegWr=0

ID/EX EX/MEM MEM/WB

53

Stalling

NOP = If(IF/ID.rA # Q &8&

ID.rA==ID/Ex.Rd
IF/ID.rA==Ex/M.Rd
IF/ID.rA==M/W.Rd))

draw control signals for /stall

Q: what happens if branch in EX?
A: bad stuff: we miss the branch
So: lets try not to stall

Stalling

sub r5,r3,r5

orré,r3,r4

/stall
NOP = If(IF/ID.rA # 0 &&

(IF/1D.rA==ID/Ex.Rd
IF/ID.rA==M/W.Rd))

draw control signals for /stall

Q: what happens if branch in EX?
A: bad stuff: we miss the branch
So: lets try not to stall

Stalling

sub r5,r3,r5

orré,r3,r4

/stall
NOP = If(IF/ID.rA # 0 &&

(IF/ID.rA==ID/Ex.Rd
IF/ID.rA==Ex/M.Rd

ID.rA==M/W.Rd]]>

draw control signals for /stall

Q: what happens if branch in EX?
A: bad stuff: we miss the branch
So: lets try not to stall

time 3

r3=10
addr3,rl,r2

r3 =20

subr5,r3,r5

orr6,r3,rd

addr6,r3,r8

1

Clock cycle
2

Stalling

3

4

v

IF | ID |Ex | M Ww
Stalls x

IF ID ID |[Ex |M |W

IF IF ID | Ex | M

IF | ID |Ex

find hazards first, then draw

IMPORTANT: Arrows can only go forward in time.

Stalling

How to stall an instruction in ID stage
* prevent IF/ID pipeline register update
— stalls the ID stage instruction
» convert ID stage instr into nop for later stages
— innocuous “bubble” passes through pipeline

* prevent PC update
— stalls the next (IF stage) instruction

prev slide:
Q: what happens if branch in EX?
A: bad stuff: we miss the branch

So: lets try not to stall

58

Takeaway

Data hazards occur when a operand (register) depends
on the result of a previous instruction that may not be
computed yet. A pipelined processor needs to detect
data hazards.

Stalling, preventing a dependent instruction from
advancing, is one way to resolve data hazards.

Stalling introduces NOPs (“bubbles”) into a pipeline.
Introduce NOPs by (1) preventing the PC from updating,
(2) preventing writes to IF/ID registers from changing,
and (3) preventing writes to memory and register file.
Bubbles in pipeline significantly decrease performance.

59

60

