Performance and Pipelining

CS 3410, Spring 2014
Computer Science
Cornell University

See P&H Chapter: 1.6, 4.5-4.6

Announcements

HW 1
Quite long. Do not wait till the end.
PA 1 design doc
Critical to do this, else PA 1 will be hard

HW 1 review session
Fri (2/21) and Sun (2/23). 7:30pm.
Location: Olin 165

Prelim 1 review session
Next Fri and Sun. 7:30pm. Location: TBA

Control Flow: Absolute Jump
I@@@@l@I1@100@@1@@10@@@11@0@@@@@11I

op immediate m
6 bits Lo

op Mnemonic Description

)9 J target PC = (PC+4) e target ¢ 00

Absolute addressing for jumps (PC+4),, ,, will be the same

+ Jump from 0430000000 to 04200000007 [_
— But: Jumps from Ox2FFFFFFc to Ox3xxxxxxx are possible, but not reverse
* Trade-off: out-of-region jumps vs. 32-bit instruction encoding

MIPS Quirk:

* jump targets computed using already incremented PC

Two’s Complement

+8 = 1000

Non-negatives Negatives
(as usual): (two’s complement: flip then add 1):
+0 = 0000 flip=1111 -0 = 0000
+1 =0001 flip =1110 -1=1111
+2 =0010 flip=1101 -2=1110
+3 =0011 flip =1100 -3=1101
+4 = 0100 flip =1011 -4 =1100
+5=0101 flip = 1010 -5=1011
+6 =0110 flip = 1001 -6 =1010
+7=0111 flip = 1000 -7/ =1001
flip =0111 -8 = 1000

2’s complement

1101 (-3) | O S —2
= | >3
oo ~ O
3 _ RYOR!
/ZSArA;r\:E#- VLY
100100 L2722

O 12\ 20 Re\C
>

y .

C :Z—}

Goals for today

Performance
 What is performance?
* How to get it?

Pipelining

Performance

Complex question

How fast is the processor?

How fast your application runs?

How quickly does it respond to you?

How fast can you process a big batch of jobs?
How much power does your machine use?

Measures of Performance

Clock speed
* 1 MHz, 10° Hz: cycle is 1 microsecond (10°)
1 Ghz, 10° Hz: cycle is 1 nanosecond (107?)
 1Thz, 102 Hz: cycle is 1 picosecond (10-1?)

Instruction/application performance
 MIPs (Millions of instructions per second)

 FLOPs (Floating point instructions per second)

GPUs: GeForce GTX Titan (2,688 cores, 4.5 Tera flops, 7.1 billion
transistors, 42 Gigapixel/sec fill rate, 288 GB/sec)

 Benchmarks (SPEC)

Measures of Performance

Latency

* How long to finish my program
— Response time, elapsed time, wall clock time
— CPU time: user and system time

Throughput

e How much work finished per unit time

ldeal: Want high throughput, low latency
... also, low power, cheap (SS) etc.

How to make the computer faster?

Decrease latency

Critical Path

* Longest path determining the minimum time needed
for an operation

* Determines minimum length of cycle, maximum clock
frequency

Optimize for delay on the critical path
— Parallelism (like carry look ahead adder)
— Pipelining
— Both

Latency: Optimize Delay on Critical Path

E.g. Adder performance

32 Bit Adder Design Space Time

Ripple Carry = 300 gates = 64 gate delays

2-Way Carry-Skip = 360 gates = 35 gate delays

3-Way Carry-Skip = 500 gates = 22 gate delays
4-Way Carry-Skip = 600 gates =~ 18 gate delays

2-Way Look-Ahead = 550 gates = 16 gate delays
Split Look-Ahead = 800 gates = 10 gate delays
Full Look-Ahead = 1200 gates = 5 gate delays

Multi-Cycle Instructions
But what to do when operations take diff. times?

E.g: Assume:
* load/store: 100 ns . 10 MHz ms = 103 second
— 106
e arithmetic: 50 ns . 20 MHz us = 10™ seconds

ns = 10° seconds
e branches: 33 ns <«— 30MHz

Single-Cycle CPU
10 MHz (100 ns cycle) with

— 1 cycle per instruction

Multi-Cycle Instructions

Multiple cycles to complete a single instruction

E.g: Assume:

* |load/store: 100 ns <— 10 MHz ms = 10 second
us = 10 seconds

e arithmetic: 50 ns <— 20 MHz ns = 10 seconds

* branches: 33 ns <«— 30 MHz

Multi-Cycle CPU
30 MHz (33 ns cycle) with

* 3 cycles per load/store
e 2 cycles per arithmetic
* 1 cycle per branch

Cycles Per Instruction (CPI)

Instruction mix for some program P, assume:
* 25% load/store (3 cycles / instruction)
* 60% arithmetic (2 cycles / instruction)
* 15% branches (1 cycle /instruction)

Multi-Cycle performance for program P:
3*.25+2*60+1*.15=2.1

average cycles per instruction (CPIl) = 2.1

Multi-Cycle @ 30 MHz<— 30M cycles/sec +2.0 cycles/instr

VS
Single-Cycle @ 10 MHz

MIPS = millions of instructions per second

Total Time
CPU Time = # Instructions x CPI x Clock Cycle Time

Say for a program with 400k instructions, 30 MHz:
Time =400k x 2.1 x 33 ns = 27 millisecs

I xyC/%cleA) xm
i >

Example

Goal: Make Multi-Cycle @ 30 MHz CPU (15MIPS) run
2x faster by making arithmetic instructions faster

Instruction mix (for P):
 25% load/store, CPI =3
* 60% arithmetic, CPI =2
e 15% branches, CPl=1

Example

Goal: Make Multi-Cycle @ 30 MHz CPU (15MIPS) run
2x faster by making arithmetic instructions faster

Instruction mix (for P): 5 Q_S%?D ms

e 25% load/store, CPl=3 O -C < \-\—
e 60% arithmetic, CPl =2 @ |
e 15% branches, CPl=1 S+)

—

First lets try CPI of 1 for arithmetic. O-3SH0-L4 @.K

Is that 2x faster overall? No - @
How much does it improve performance?

Example

Goal: Make Multi-Cycle @ 30 MHz CPU (15MIPS)
run 2x faster by making arithmetic instructions

faster 9. \ CP (- 2-\
=

Instruction mix (for P): | O

e 25% load/store, CPl =3 270 2S ‘\ ’}(»ﬁ) L

e 60% arithmetic, CPI =2
TO (Sl =

e 15% branches, CPl=1
<% @

Example

Goal: Make Multi-Cycle @ 30 MHz CPU (15MIPS)
run 2x faster by making arithmetic instructions

faster

Instruction mix (for P):
e 25% load/store, CPlI =3
e 60% arithmetic, CPI =2
e 15% branches, CPl=1

To double performance CPI has to go from 2
to 0.25

Amdahl’s Law

Amdahl’s Law

Execution time after improvement =
execution time affected by improvement

' + execution time unaffected
amount of improvement

Or: Speedup is limited by popularity of improved feature

Corollary: Make the common case fast

Caveat: Law of diminishing returns

Review: Single cycle processor

inst
memory register
file
‘- _ [r T r
)
PC
T ! offset / control

target 4
extend

AN

RN

>'mu

[

=7

cmp

A1

|

T

din

addr
d

memory

out

T

Review: Single Cycle Processor

Advantages

* Single cycle per instruction make logic and clock simple

Disadvantages

 Since instructions take different time to finish, memory
and functional unit are not efficiently utilized

* Cycle time is the longest delay
— Load instruction

* Best possible CPlis 1 (actually < 1 w parallelism)

— However, lower MIPS and longer clock period (lower clock
frequency); hence, lower performance

Review: Multi Cycle Processor

Advantages

e Better MIPS and smaller clock period (higher clock
frequency)

 Hence, better performance than Single Cycle
processor

Disadvantages

* Higher CPI than single cycle processor

Pipelining: Want better Performance

e want small CPI (close to 1) with high MIPS and short
clock period (high clock frequency)

Improving Performance

Parallelism
Pipelining

Both!

Single Cycle vs Pipelined Processor

See: P&H Chapter 4.5

The Kids 3,

Alice

\\
Bob ‘%ﬁ
/)

They don’t always get along...

The Bicycle

The Materials

Saw Drill

Glue

The Instructions
N pieces, each built following same sequence:

Saw

Design 1: Sequential Schedule

Alice owns the room

Bob can enter when Alice is finished
Repeat for remaining tasks

No possibility for conflicts

Sequential Performance
time
1 2 3 4 5 6 7/

N ElLE

9| =

;DY

Latency:
Throughput:
Concurrency:

CPI =
Can we do better?

Design 2: Pipelined Design

Partition room into stages of a pipeline

ERITE

Dave Carol Alice

One person owns a stage at a time

4 stages
4 people working simultaneously

Everyone moves right in lockstep

B D)o W DY

time

1

Pipelined Performance

2

3

5

6

/...

A

3

=

A

3

=

Y Latency:
Throughput: \

A

=

A

~
=
3
A

3

e

Concurrency:

AS:_

Pipelined Performance

Iimez 3 4 5 6 /7 8 9
SINEE
N0l 8 |=9F

NNOO| R |=fF

)3 Do B DY

Pipelined Performance

NIEEE

dANER @@ﬂ
AN I C
%

T

Latency: 4 cycles/task
Throughput: 1 task/2 cycles

Lessons
Principle:
Throughput increased by parallel execution
Balanced pipeline very important

Else slowest stage dominates performance

Pipelining:
 |dentify pipeline stages
* |solate stages from each other
* Resolve pipeline hazards (next lecture)

MIPs designhed for pipelining

* Instructions same length
e 32 bits, easy to fetch and then decode

e 3 types of instruction formats
 Easy to route bits between stages

* (Can read a register source before even knowing
what the instruction is

e Memory access through lw and sw only

 Access memory after ALU

Basic Pipeline
Five stage “RISC” load-store architecture

1. Instruction fetch (IF)
— get instruction from memory, increment PC

2. Instruction Decode (ID)
— translate opcode into control signals and read registers

3. Execute (EX)

— perform ALU operation, compute jump/branch targets

4. Memory (MEM)

— access memory if needed

5. Writeback (WB)
— update register file

A Processor

memory register

file

control

compute
jump/branch
extend targets

-’hﬂ_—lm

Principles of Pipelined Implementation

Break instructions across multiple clock cycles
(five, in this case)

Design a separate stage for the execution
performed during each clock cycle

Add pipeline registers (flip-flops) to isolate signals
between different stages

Pipelined Processor

memory register

file

control

compute
jump/branch

extend targets

IF

Stage 1: Instruction Fetch

Fetch a new instruction every cycle

* Current PCis index to instruction memory

* Increment the PC at end of cycle (assume no branches for
now)

Write values of interest to pipeline register (IF/ID)
* |nstruction bits (for later decoding)
 PC+4 (for later computing branch targets)

instruction
memory

aAddr mc

IF

5

PC I

IF

instruction
memory
addr mc
7 Q
i 2
00 = read word g
ol
G
o
)
(Vp)
Q
o
o __Dbcreg __ _ _ ________._
R oY crel_ _
____________ pcabs_ ___ __

ID

Stage 2: Instruction Decode

On every cycle:

* Read IF/ID pipeline register to get instruction bits
* Decode instruction, generate control signals
* Read from register file

Write values of interest to pipeline register (ID/EX)
* Control information, Rd index, immediates, offsets, ...
* Contents of Ra, Rb
 PC+4 (for computing branch targets later)

dest
A
register
% file B
Ra R
= 7 o
5 | =
S -1
= l -
o
C
— extend T
i Q
3 (a'et
(o]0)
5
(V]

IF/ID ID/EX

EX

Stage 3: Execute

On every cycle:
» Read ID/EX pipeline register to get values and control bits
* Perform ALU operation
 Compute targets (PC+4+offset, etc.) in case this is a branch
* Decide if jump/branch should be taken

Write values of interest to pipeline register (EX/MEM)
e Control information, Rd index, ...
* Result of ALU operation
* Value in case this is a memory store instruction

pcreg

N > alu

]

©

@)

O

8 / 4
= ' > i <
o L~ I
B i o
S ! o
— Y—
j (@]
= &
.. 0]
& pcrel o
)

oo

O

AN pcabs

ID/EX EX/MEM

MEM

Stage 4: Memory

On every cycle:

* Read EX/MEM pipeline register to get values and control bits

e Perform memory load/store if needed
— address is ALU result

Write values of interest to pipeline register (MEM/WB)
e Control information, Rd indey, ...
e Result of memory operation
* Pass result of ALU operation

Q
= <
= =
§|<J addr 8_
s =2
=5 g din dout 3

o
o0 7
e pcrel memory nch
p
MC
pcabs

« EX/MEM MEM/WB

<€

<€

WB

Stage 5: Write-back

On every cycle:

 Read MEM/WB pipeline register to get values and control bits
* Select value and write to register file

result

Stage 4: Memory

MEM/WB

WB

inst
mem

TTTe

IF/ID

ID/EX

EX/MEM

MEM/WB

Pipelining Recap

Powerful technique for masking latencies
* Logically, instructions execute one at a time
* Physically, instructions execute in parallel

— Instruction level parallelism

Abstraction promotes decoupling
* Interface (ISA) vs. implementation (Pipeline)

