Processor

CS 3410, Spring 2014
Computer Science
Cornell University

See P&H Chapter: 4.1-4.4, 1.4, Appendix A

Full Datapath

control

Execute

Iclicker

How many stages of a datapath are there in our
single cycle MIPS design?

A) 1l
)
C)3

D) 4
E)5

Stages of datapath (1/5)

control

Execute

A Single cycle processor

Stages of datapath (2/5)

A Single cycle processor

Stages of datapath (3/5)

control

Execute

A Single cycle processor

Stages of datapath (4/5)

control

Execute Memory
>

A Single cycle processor

Stages of datapath (5/5)

Execute

Takeaway

The datapath for a MIPS processor has five stages:
1. Instruction Fetch
. Instruction Decode
. Execution (ALU)
. Memory Access
. Register Writeback

This five stage datapath is used to execute all MIPS
instructions

Iclicker

There are how many types of instructions in the
MIPS ISA?

A) 1
B)3
C)5

D) 200
E) 1000s

10

MIPS instructions

All MIPS instructions are 32 bits long, has 3 formats

R-type op rs rt rd shamt func

6 bits 5 bits 5 bits 5bits 5bits 6 bits

e) |
op rs rt immediate

6 bits 5 bits 5 bits 16 bits

|
op immediate (target address)

J-type 6 bits 26 bits

11

MIPS Instruction Functions

Arithmetic/Logical
* R-type: result and two source registers, shift amount
* |-type: 16-bit immediate with sign/zero extension

Memory Access
* load/store between registers and memory
* word, half-word and byte operations

Control flow
* conditional branches: pc-relative addresses
* jumps: fixed offsets, register absolute

Arithmetic Instructions: Shift
0000V 100010000V110000000O

op - rt rd shamt func

6 bits 5 bits 5bits 5 bits 5 bits 6 bits

func | mnemonic description

SRLrd, rt, shamt R[rd] = R[rt] >>> shamt (zero ext.)
SRArd, rt, shamt R[rd] = R[rt] >> shamt (sign ext.)

ex:r8 =r4 * 64 #SLLr8, r4,6
r8=r4<<6

control

Arithmetic Instructions: Immediates
00100000101001010000000000000101

op rs rd immediate

6 bits 5 bits 5 bits 16 bits

op mnemonic description

0x8 ADDI rd, rs, imm R[rd] = R[rs] + imm
Oxc ANDI rd, rs, imm R[rd] = R[rs] & imm
Oxd ORI rd, rs, imm R[rd] = R[rs] | imm

ex:r5=r5+5 # ADDIr5,r5,5
r5+=5
What if immediate is negative?

ex: r5+=-1

For addi, sign extension and can do positive and negative. Will signal overflow.
For addiu, still use sign extension, but no overflow

Add vs. addu: no overflow for addu

Immediates

addi
control

Immediates

addi
control

Arithmetic Instructions: Immediates
00111100000001010000000000000101

op - rd immediate

6 bits 5 bits 5 bits 16 bits

op mnemonic description
OxF LUl rd, imm R[rd] = imm << 16

ex: r5 =0x50000 #LUIr5,5

ex: LUl r5, Oxdead
ORI 5, r5 Oxbeef

What does r5 =7?
r5 = Oxdeadbeef

Immediates

or, extra input to alu B mux from before/after extend
(or, extra mux after alu)

Goals for today

MIPS Datapath

* Memory layout

* Control Instructions
Performance

* How fast can we make it?

* CPI (Cycles Per Instruction)

* MIPS (Instructions Per Cycle)

* Clock Frequency

20

MIPS Instruction Types

Arithmetic/Logical
* R-type: result and two source registers, shift amount
* |-type: 16-bit immediate with sign/zero extension

emory Access
* load/store between registers and memory
word, half-word and byte operations

Control flow
* conditional branches: pc-relative addresses
* jumps: fixed offsets, register absolute

Memory Instructions

1010110010100001,000000000000010

op rs nrd offset

6 bits 5 bits 5 bits 16 bits | base + offset
: . ddressi
mnemonic description ¢

0x23 LW rd, offset(rs) R[rd] = Mem[offset+[rs]]
0x2b SW rd, offset(rs) Mem|offset+R[rs]] = R[rd]

signed
offsets

ex: = Mem[4+r5]=r1 #SWrl, 4(r5)

Memory Operations

Write Enable

ex: = Mem[4+r5]=r1 #SWrl, 4(r5)

Memory Instructions

10101100101000010000000000000100
op rs nrd offset

6 bits 5 bits 5 bits 16 bits
mnemonic description

LB rd, offset(rs) R[rd] = sign_ext(Mem[offset+R[rs]])
LBU rd, offset(rs) | R[rd] = zero_ext(Mem|[offset+R[rs]])

LH rd, offset(rs) R[rd] = sign_ext(Mem[offset+R[rs]])
LHU rd, offset(rs) | R[rd] = zero_ext(Mem|[offset+R[rs]])
LW rd, offset(rs) R[rd] = Mem|offset+R][rs]]
SB rd, offset(rs) Mem/[offset+R[rs]] = R[rd]
SH rd, offset(rs) Mem/[offset+R[rs]] = R[rd]
SW rd, offset(rs) Mem|offset+R[rs]] = R[rd]

sw rl 4(r5)
sb r1, 3(r5)

If you don’t make sure half word accesses are half word aligned, or word accesses are
word aligned, there will be an error signaled. We will talk about traps and exceptions
later.

Endianness
Endianness: Ordering of bytes within a memory word

Little Endian = least significant part first (MIPS, x86)
1000 1001 1002 1003

as 4 bytes

as2halfwords | 0x5678 | 0x1234 |
as 1 word 0x12345678

Big Endian = most significant part first (MIPS, networks)

1000 1001 1002 1003
as 4 bytes

as 2 halfwords 0x1234 0x5678
as 1 word 0x12345678

Comes from Gulliver travels

25

~Memory Layout
Examples Ilttle endian):

r5 contains 5 (0x00000005)

SB r5, 2(r0)
LB r6, 2(r0)
R([r6] = 0x05

SW r5, 8(r0)
LB r7, 8(r0)
LB r8, 11(r0)
R[r7] = 0x00
R[r8] = Ox05

Big Endian means store MSB (most significant byte) first

0x00000000
0x00000001
0x00000002
0x00000003
0x00000004
0x00000005
0x00000006
0x00000007
0x00000008
0x00000009
0x0000000a
0x0000000b

26

MIPS Instruction Types

Arithmetic/Logical
* R-type: result and two source registers, shift amount
* |-type: 16-bit immediate with sign/zero extension

Memory Access
* load/store between registers and memory
* word, half-word and byte operations

Control flow
* conditional branches: pc-relative addresses
jumps: fixed offsets, register absolute

Control Flow: Absolute Jump
00001010100001001000011000000011

op immediate

6 bits 26 bits

op Mnemonic Description
0x2 J target PC=(PC+4);, ,4 * target * 00

(PC+4)3, 58 target 00
4 bits 26 bits 2 bits

(PC+4),, ,, ©10000OPOOPPOPVBOORPRRD 00

ex: j 0x1000000
PC = ((PC+4) & 0xf0000000) | 0x04000000

Where ¢ is used to concatenate
Why should the offset be left shifted by 2. To keep the jump address word aligned.

AND to not waste two bits that we *know* are going to be O.

Control Flow: Absolute Jump
00001010100001001000011000000011

op immediate -—-m
6 bits

op Mnemonic Description
0x2 J target PC=(PC+4);, ,, * target * 00

Absolute add ressinﬁg/f/g[,jumpfs——i—;;::v (PC+4),, 5 will be the same
+ Jump from 030000000 to 0£20000000?

— But: Jumps from Ox2FFFFFFF to Ox3xxxxxxx are possible, but not reverse
* Trade-off: out-of-region jumps vs. 32-bit instruction encoding

MIPS Quirk:
* jump targets computed using already incremented PC

Where ¢ is used to concatenate

Absolute Jump

op Mnemonic Description
Ox2 J target PC = (PC+4);, ,g ® target * 00

Control Flow: Jump Register
00000VVPVV110000000000VVVVO 1000

op rs - - - func

6 bits 5 bits 5bits 5 bits 5 bits 6 bits

op | func mnemonic description
0x0 | 0x08 JRrs PC = R]rs]

ex:JRr3

op func mnemonic description
0x0 |0x08 JRrs PC = R|[rs]

Examples

E.g. Use Jump or Jump Register instruction to
jump to Oxabcd1234

But, what about a jump based on a condition?
#assumeO0<=r3<=1

if (r3 == 0) jump to Oxdecafe00
else jump to Oxabcd1234

Control Flow: Branches
00010000101000010000000000000011

op rs rd offset

6 bits 5 bits 5 bits 16 bits
signed
. . . offsets
op 'mnemonic description
rs, rd, offset | if R[rs] == R[rd] then PC = PC+4 + (offs

0x5 BNE s, rd, offset | if R[rs] != R[rd] then PC = PC+4 + (offset<<2)

ex: BEQr5,rl, 3
If(R[r5]==R[r1]) then PC = PC+4 + 12

Why should the offset be left shifted by 2. To keep the jump address word aligned.

AND to not waste two bits that we *know™ are going to be O.

Control Flow: Branches

control’ geq \

ed Al U for
branch cmp

|” Could have
|"used ALU for |
branch add

op mnemonic description
0x4 BEQrs, rd, offset | if R[rs] == R[rd] then PC = PC+4 + (offset<<2)
0x5 BNE s, rd, offset | if R[rs] != R[rd] then PC = PC+4 + (offset<<2)

In the book, the ALU is used to determine the branch comparison. We are choosing to
do it separately.

Anyway, can’t use ALU for both branc comparison and PC determination. At most, we
can use it once. The book uses it for branch

Control Flow: More Branches

Conditional Jumps (cont.)
00000100101000010000000000000010

b rs subop offset

6 bits 5 bits 5 bits 16 bits

signed
offsets
op subop mnemonic description

0x1 0xO0 BLTZ rs, offset _ if R[rs] <0 then PC = PC+4+ (offset<<2)
00 st rzover s G

0x6 0xO0 BLEZ rs, offset | if R[rs] <0 then PC = PC+4+ (offset<<2)

0x7 0xO0 BGTZ rs, offset | if R[rs] >0 then PC = PC+4+ (offset<<2)

ex: BGEZ r5, 2
If(R[r5] = 0) then PC=PC+4 + 8

Control Flow: More Branches

control
BEQZ

Could have
used ALU for
mnemonic description branch cmp
BLTZ rs, offset if R[rs] < 0 then PC = PC+4+ (offset<<2)
BGEZ rs, offset if R[rs] 2 0 then PC = PC+4+ (offset<<2)

BLEZ rs, offset if R[rs] < 0 then PC = PC+4+ (offset<<2)

BGTZ rs, offset if R[rs] > 0 then PC = PC+4+ (offset<<2)

Control Flow: Jump and Link

Why? Function/procedure calls
00001100000001001000011000000010

op immediate
6 bits 26 bits

op mnemonic description

0x3 | JAL target r31=PC+8 (+8 due to branch delay slot)
PC = (PC+4);, 5 ® target * 00

ex: JAL 0x1000000
r31 = PC+8
PC = (PC+4);, ,¢* 0x4000000
op mnemonic description
0x2 J target PC = (PC+4);, ,q ® target * 00

0x0121808 == 1185800

Jump and Link

Prog. linst
Mem

Could have
used ALU for
link add

op mnemonic description

0x3 | JAL target r31=PC+8 (+8 due to branch delay slot)
PC = (PC+4);, g | | (target << 2)

Goals for today

MIPS Datapath
* Memory layout
* Control Instructions
Performance
* How to get it?
* CPI (Cycles Per Instruction)
* MIPS (Instructions Per Cycle)
* Clock Frequency
Pipelining
* Latency vs throughput

40

Questions

How do we measure performance?
What is the performance of a single cycle CPU?

How do | get performance?

See: P&H 1.4

41

What instruction has the longest path
A) LW
B) SW
C) ADD/SUB/AND/OR/etc
»)]:]e}

E)J

42

Memory Operations

Mem[4+r5]

ex: =rl =Mem[4+r5] #LWrl, 4(r5)

Performance

How do | get it?
Parallelism
Pipelining
Both!

44

Performance: Aside

Speed of a circuit is affected by the number of
gates in series (on the critical path or the
deepest level of logic)

combinatorial
Logic

>
t

outputs
expected

combinatorial

4-bit Ripple Carry Adder

A, B,

Carry ripples from Isb to msb

« First full adder, 2 gate delay
« Second full adder, 2 gate delay

Adding

Main ALU, slows us down
Does it need to be this slow?

Observations
* Have to wait for Cin
e Can we compute in parallel in some way?

e CLA carry look-ahead adder

47

Carry Look Ahead Logic

Can we reason independent of Cin?
* Just based on (A,B) only

When is Cout == 1, irrespective of Cin

If Cin == 1, when is Cout also ==

1-bit Adder with Carry

Full Adder
e Adds three 1-bit numbers

* Computes 1-bit result and
1-bit carry

* Can be cascaded

1-bit CLA adder

A B

JRE

Create two terms: propagator, generator

g =1, generates Cout: g = AB
* Irrespective of Cin

p =1, propagates Cinto Cout: p=A+B
p and g generated in 1 cycle delay
R is 2 cycle delay after we get Cin

1-bit Adder with Carry

Full Adder
e Adds three 1-bit numbers

* Computes 1-bit result and
1-bit carry

* Can be cascaded

4-bit CLA

+ CLA takes p,g from all 4 bits, CO and generates all Cs: 2 gate delay

C1=80+PoCo

C, =8, +P,C; =8, + P1(8y + PoCo) = 81 + P18o * P1PCy
C3=8, +P,C, =8, + P,81 + PaP18o + P2P1PCo

Cs =83+ P3C3 =83+ P38, + P3P,81 + P3P,P180 * P3PoP1PCo

C, = Function (C,, p and g values)

4-bit CLA

* Given A,B’s, all p,g’s are generated in 1 gate delay in parallel
* Given all p,g’s, all C’s are generated in 2 gate delay in parallel

Sequential operation is made into parallel operation!!

Performance

Ripple carry adder vs carry lookahead adder for 8
bits
*2x8 vs.5

Performance

How do | get it?
Parallelism
Pipelining
Both!

55

