## **Processor**

CS 3410, Spring 2014

**Computer Science** 

**Cornell University** 

See P&H Chapter: 2, 4.1-4.4, Appendices A and B

## Administration

Partner finding assignment on CMS

Office hours over break

## **Goal for Today**

### Understanding the basics of a processor

We now have enough building blocks to build machines that can perform non-trivial computational tasks

### Putting it all together:

- Arithmetic Logic Unit (ALU)—Lab0 & 1, Lecture 2 & 3
- Register File—Lecture 4 and 5
- Memory—Lecture 5
  - SRAM: cache
  - DRAM: main memory
- Instruction types
- Instruction datapaths

# MIPS Register File



A Single cycle processor

# MIPS Register file

### MIPS register file

- 32 registers, 32-bits each (with r0 wired to zero)
- Write port indexed via R<sub>W</sub>
  - Writes occur on falling edge but only if WE is high
- Read ports indexed via R<sub>A</sub>, R<sub>B</sub>



# MIPS Register file

### MIPS register file

 32 registers, 32-bits each (with r0 wired to zero)

- Write port indexed via R<sub>W</sub>
  - Writes occur on falling edge but only if WE is high
- Read ports indexed via R<sub>A</sub>, R<sub>B</sub>



## MIPS Register file

### Registers

- Numbered from 0 to 31
- Each register can be referred by number or name
- \$0, \$1, \$2, \$3 ... \$31
- Or, by convention, each register has a name
  - $-\$16 \$23 \rightarrow \$s0 \$s7$
  - $-\$8 \$15 \rightarrow \$t0 \$t7$
  - \$0 is always \$zero
  - P&H

# **MIPS Memory**



A Single cycle processor

## **MIPS Memory**

### **MIPS Memory**

- 32-bit address
- 32-bit data
   (but byte addressed)
- Enable + 2 bit memory control (mc)

00: read word (4 byte aligned)

01: write byte

10: write halfword (2 byte aligned)

11: write word (4 byte aligned)



|      | 0x00000000 |
|------|------------|
|      | 0x00000001 |
| 0x05 | 0x00000002 |
|      | 0x00000003 |
|      | 0x00000004 |
|      | 0x00000005 |
|      | 0x00000006 |
|      | 0x00000007 |
|      | 00000000   |

# Putting it all together: Basic Processor



A Single cycle processor

# To make a computer

Need a program

Stored program computer

**Architectures** 

von Neumann architecture

Harvard (modified) architecture

# Putting it all together: Basic Processor

#### Let's build a MIPS CPU

...but using (modified) Harvard architecture



## **Takeaway**

A processor executes instructions

 Processor has some internal state in storage elements (registers)

A memory holds instructions and data

- (modified) Harvard architecture: separate insts and data
- von Neumann architecture: combined inst and data

A bus connects the two

We now have enough building blocks to build machines that can perform non-trivial computational tasks

### **Next Goal**

How to program and execute instructions on a MIPS processor?

# Levels of Interpretation: Instructions

```
for (i = 0; i < 10; i++)
    printf("go cucs");</pre>
```



ALU, Control, Register File, ...

Programs written in a High Level Language

- C, Java, Python, Ruby, ...
- Loops, control flow, variables

Need translation to a lowerlevel computer understandable format

- Assembly is human readable machine language
- Processors operate on Machine Language

Machine Implementation

# Levels of Interpretation: Instructions

```
for (i = 0; i < 10; i++)
    printf("go cucs");</pre>
```



#### High Level Language

- C, Java, Python, Ruby, ...
- Loops, control flow, variables

### main: addi r2, r0, 10

addi r1, r0, 0

loop: slt r3, r1, r2

• • •

op=addi r0



10

op=reg

1

r2 📉 r

r3

func=slt

ALU, Control, Register File, ...

#### Assembly Language

- No symbols (except labels)
- One operation per statement

#### Machine Language

- Binary-encoded assembly
- Labels become addresses

Machine Implementation

## Instruction Usage

memory, encoded in binary

A basic processor

- fetches
- decodes
- executes

one instruction at a time

op=addi 10 00000000001000100001100000101010 addr data cur inst pc adder decode

execute

regs

### **MIPS Design Principles**

### Simplicity favors regularity

• 32 bit instructions

#### Smaller is faster

Small register file

#### Make the common case fast

Include support for constants

#### Good design demands good compromises

Support for different type of interpretations/classes

## **Instruction Types**

#### Arithmetic

add, subtract, shift left, shift right, multiply, divide

#### Memory

- load value from memory to a register
- store value to memory from a register

#### **Control flow**

- unconditional jumps
- conditional jumps (branches)
- jump and link (subroutine call)

### Many other instructions are possible

- vector add/sub/mul/div, string operations
- manipulate coprocessor
- I/O

### Instruction Set Architecture

The types of operations permissible in machine language define the ISA

- MIPS: load/store, arithmetic, control flow, ...
- VAX: load/store, arithmetic, control flow, strings, ...
- Cray: vector operations, ...

#### Two classes of ISAs

- Reduced Instruction Set Computers (RISC)
- Complex Instruction Set Computers (CISC)

We'll study the MIPS ISA in this course

### Instruction Set Architecture

### Instruction Set Architecture (ISA)

 Different CPU architecture specifies different set of instructions. Intel x86, IBM PowerPC, Sun Sparc, MIPS, etc.

### MIPS (RISC)

- ≈ 200 instructions, 32 bits each, 3 formats
- all operands in registers
- ≈ 1 addressing mode: Mem[reg + imm]

### x86: Complex Instruction Set Computer (CISC)

- > 1000 instructions, 1 to 15 bytes each
- operands in special registers, general purpose registers, memory, on stack, ...
  - can be 1, 2, 4, 8 bytes, signed or unsigned
- 10s of addressing modes
  - e.g. Mem[segment + reg + reg\*scale + offset]

### Instructions

### Load/store architecture

- Data must be in registers to be operated on
- Keeps hardware simple

Emphasis on efficient implementation

Integer data types:

• byte: 8 bits

half-words: 16 bits

• words: 32 bits

MIPS supports signed and unsigned data types

### MIPS instruction formats

All MIPS instructions are 32 bits long, has 3 formats

```
rd shamt func
                         rt
            op
                   rs
R-type
            6 bits
                  5 bits 5 bits 5 bits
                                            6 bits
                                  immediate
                         rt
            op
                   rs
I-type
                  5 bits
                                     16 bits
            6 bits
                        5 bits
                 immediate (target address)
            op
J-type
            bits
                               26 bits
```

### **MIPS Design Principles**

### Simplicity favors regularity

• 32 bit instructions

#### Smaller is faster

Small register file

#### Make the common case fast

Include support for constants

#### Good design demands good compromises

Support for different type of interpretations/classes of instructions

## **Takeaway**

A MIPS processor and ISA (instruction set architecture) is an example of a Reduced Instruction Set Computers (RISC) where simplicity is key, thus enabling us to build it!!

### **Next Goal**

How are instructions executed?

What is the general datapath to execute an instruction?

## Instruction Usage

memory, encoded in binary

A basic processor

- fetches
- decodes
- executes

one instruction at a time

op=addi 10 00000000001000100001100000101010 addr data cur inst pc adder decode

execute

regs

## Five Stages of MIPS Datapath



A Single cycle processor

# Five Stages of MIPS datapath

### Basic CPU execution loop

- 1. Instruction Fetch
- 2. Instruction Decode
- 3. Execution (ALU)
- 4. Memory Access
- 5. Register Writeback

### Instruction types/format

Arithmetic/Register:

Arithmetic/Immediate:

Memory:

Control/Jump:

addu \$s0, \$s2, \$s3

slti \$s0, \$s2, 4

lw \$s0, 20(\$s3)

j Oxdeadbeef

## Stages of datapath (1/5)

### Stage 1: Instruction Fetch

- Fetch 32-bit instruction from memory
  - Instruction cache or memory
- Increment PC accordingly
  - +4, byte addressing
  - +N



# Stages of datapath (1/5)



A Single cycle processor

## Stages of datapath (2/5)

### Stage 2: Instruction Decode

- Gather data from the instruction
- Read opcode to determine instruction type and field length
- Read in data from register file
  - E.g. for addu, read two registers
  - E.g. for addi, read one register
  - E.g. for jal, read no registers



## Stages of datapath (2/5)

All MIPS instructions are 32 bits long, has 3 formats

```
rd shamt func
                         rt
            op
                   rs
R-type
           6 bits
                  5 bits 5 bits 5 bits
                                            6 bits
                                  immediate
                         rt
            op
                   rs
I-type
                  5 bits
           6 bits
                        5 bits
                                     16 bits
                 immediate (target address)
            op
J-type
            bits
                               26 bits
```

## Stages of datapath (2/5)



A Single cycle processor

## Stages of datapath (3/5)

### Stage 3: Execution (ALU)

- Useful work is done here (+, -, \*, /), shift, logic operation, comparison (slt).
- Load/Store?
  - lw \$t2, 32(\$t3)
  - Compute the address of the memory



## Stages of datapath (3/5)



A Single cycle processor

### Stages of datapath (4/5)

#### Stage 4: Memory access

- Used by load and store instructions only
- Other instructions will skip this stage



## Stages of datapath (4/5)



A Single cycle processor

### Stages of datapath (5/5)

#### Stage 5:

- For instructions that need to write value to register
- Examples: arithmetic, logic, shift, etc., load
- Branches, jump??



# Stages of datapath (5/5)



# **Full Datapath**



### **Takeaway**

The datapath for a MIPS processor has five stages:

- 1. Instruction Fetch
- Instruction Decode
- Execution (ALU)
- 4. Memory Access
- 5. Register Writeback

This five stage datapath is used to execute all MIPS instructions

### **Next Goal**

Specific datapaths for MIPS Instructions

## MIPS Instruction Types

#### **Arithmetic/Logical**

- R-type: result and two source registers, shift amount
- I-type: 16-bit immediate with sign/zero extension

#### **Memory Access**

- load/store between registers and memory
- word, half-word and byte operations

#### **Control flow**

- conditional branches: pc-relative addresses
- jumps: fixed offsets, register absolute

#### MIPS instruction formats

All MIPS instructions are 32 bits long, has 3 formats

```
rd shamt func
                         rt
            op
                   rs
R-type
            6 bits
                  5 bits 5 bits 5 bits
                                            6 bits
                                  immediate
                         rt
            op
                   rs
I-type
                  5 bits
                                     16 bits
            6 bits
                        5 bits
                 immediate (target address)
            op
J-type
            bits
                               26 bits
```

### **Arithmetic Instructions**

0000001000001100010000000100110

op rs rt rd - func

**R-Type** 

6 bits 5 bits 5 bits 5 bits 6 bits

| ор  | func | mnemonic        | description                             |
|-----|------|-----------------|-----------------------------------------|
| 0x0 | 0x21 | ADDU rd, rs, rt | R[rd] = R[rs] + R[rt]                   |
| 0x0 | 0x23 | SUBU rd, rs, rt | R[rd] = R[rs] - R[rt]                   |
| 0x0 | 0x25 | OR rd, rs, rt   | R[rd] = R[rs]   R[rt]                   |
| 0x0 | 0x26 | XOR rd, rs, rt  | $R[rd] = R[rs] \oplus R[rt]$            |
| 0x0 | 0x27 | NOR rd, rs rt   | $R[rd] = $ $\sim $ ( $R[rs]   R[rt] $ ) |

ex: r4 = r8 \( \oplus \) r6 # XOR r4, r8, r6

# **Arithmetic and Logic**



### **Arithmetic Instructions: Shift**

**R-Type** 

#### 0000000000001000100000110000000

op - rt rd shamt func
6 bits 5 bits 5 bits 5 bits 6 bits

| ор  | func | mnemonic          | description                         |
|-----|------|-------------------|-------------------------------------|
| 0x0 | 0x0  | SLL rd, rt, shamt | R[rd] = R[rt] << shamt              |
| 0x0 | 0x2  | SRL rd, rt, shamt | R[rd] = R[rt] >>> shamt (zero ext.) |
| 0x0 | 0x3  | SRA rd, rt, shamt | R[rd] = R[rt] >> shamt (sign ext.)  |

# Shift

