Processor

CS 3410, Spring 2014
Computer Science
Cornell University

See P&H Chapter: 2, 4.1-4.4, Appendices A and B

Administration

Partner finding assignment on CMS

Office hours over break

Goal for Today

Understanding the basics of a processor

We now have enough building blocks to build machines
that can perform non-trivial computational tasks

Putting it all together:
* Arithmetic Logic Unit (ALU)—Lab0 & 1, Lecture 2 & 3
* Register File—Lecture 4 and 5

* Memory—Lecture 5
— SRAM: cache
— DRAM: main memory

* Instruction types
* Instruction datapaths

memory [

MIPS Register File

register

A Single cycle processor

memory

t

MIPS Register file

MIPS register file

* 32 registers, 32-bits eac
(with rO wired to zero)

h32

* Write port indexed via R,

— Writes occur on falling edge
but only if WE is high

——3

Dw Dual-Read-Port
Single-Write-Port
32x32
Register File

Ryw Ry Ry

Qar>

B

32

* Read ports indexed via Ry, Rg

$$$$

32

MIPS Register file

MIPS register file
* 32 registers, 32-bits each *?
(with rO wired to zero)

* Write port indexed via R,

— Writes occur on falling edge
but only if WE is high

——3

ril
r2

r31

Ryw Ry Ry

32

* Read ports indexed via Ry, Rg

$$$$

32

Why 327? Smaller is faster

MIPS Register file

Registers
* Numbered from 0 to 31
* Each register can be referred by number or name
* S0, 51,52,53...531
* Or, by convention, each register has a name
-$16-523 > S$s0-Ss7
- $8-515 > St0 - $t7
— S0 is always Szero
— P&H

&

MIPS Memory

register
alu
file >

A Single cycle processor

din

addr
d

memory

out

t

MIPS Memory

Din ;s D:OUK
memor
MIPS Memory 32 yoPp2
* 32-bit address
* 32-bit data T, T |
(but byte addressed) addr mc E
* Enable + 2 bit memory control (mc)
00: read word (4 byte aligned) 9X00000000
01: write byte 0x00000001
o) 0x05 |ex00000002
10: write halfword (2 byte aligned) 0X00000003
11: write word (4 byte aligned) 0X00000004
0x00000005
0X00000006

0x00000007

Putting it all together: Basic Processor

memory register alu
file
l .
()
T addr
:? T
Gc_l din dout
offset ontro cm

memory
new \targetf 1
|

mm 1
pc @Tml

A Single cycle processor

A processor executes instructions

Processor has some internal state in storage elements (registers)
A memory holds instructions and data

Harvard architecture: separate insts and data

von Neumann architecture: combined inst and data
A bus connects the two

To make a computer

Need a program
Stored program computer

Architectures
von Neumann architecture
Harvard (modified) architecture

A stored-program computer is one which stores program instructions in electronic
memory. Often the definition is extended with the requirement that the treatment of
programs and data in

11

Putting it all together: Basic Processor

Let’s build a MIPS CPU
* ...but using (modified) Harvard architecture

Registers 00100000001
00100000010
data, address, 00010000100
control e
) Data
cpU 10100010000 Memory
) 10110000011
00100010101
Program
Memory

The Harvard architecture is a computer architecture with physically separate storage
and signal pathways for instructions and data. --- http://en.wikipedia.org/wiki/
Harvard_architecture

Under pure von Neumann architecture the CPU can be either reading an instruction
or reading/writing data from/to the memory. Both cannot occur at the same time
since the instructions and data use the same bus system. In a computer using the
Harvard architecture, the CPU can both read an instruction and perform a data
memory access at the same time, even without a cache. A Harvard architecture
computer can thus be faster for a given circuit complexity because instruction fetches
and data access do not contend for a single memory pathway .

Also, a Harvard architecture machine has distinct code and data address spaces:
instruction address zero is not the same as data address zero. Instruction address zero
might identify a twenty-four bit value, while data address zero might indicate an eight
bit byte that isn't part of that twenty-four bit value.

A modified Harvard architecture machine is very much like a Harvard architecture
machine, but it relaxes the strict separation between instruction and data while still
letting the CPU concurrently access two (or more) memory buses. The most common
modification includes separate instruction and data caches backed by a common

Takeaway

A processor executes instructions

* Processor has some internal state in storage elements
(registers)

A memory holds instructions and data

* (modified) Harvard architecture: separate insts and
data

e von Neumann architecture: combined inst and data
A bus connects the two

We now have enough building blocks to build
machines that can perform non-trivial
computational tasks

13

How to program and execute instructions on a

MIPS processor?

Next Goal

14

Levels of Interpretation: Instructions

for (i = 9; 1 < 10; i++)
printf(“go cucs”);

L

Programs written in a
High Level Language
* C,Java, Python, Ruby, ...
* Loops, control flow, variables

main: addi r2, ro, 10
addi r1, ro, o
loop: slt r3, ri, r2

T

AL

10

op=addi r0

op=reg rl func=slt

rZD r3

ALU, Control, Register File, ...

Need translation to a lower-
level computer understandable
format

o D

is human readable
machine language

* Processors operate on
Viachine Language

Machine Implementation

Levels of Interpretation: Instructions

for (i = 9; 1 < 10; i++)
printf(“go cucs”);

L

main: addi r2, ro, 10
addi r1, ro, o
loop: slt r3, ri, r2

AL 10

op=addi r0

op=reg rl func=slt

rZD r3

ALU, Control, Register File, ...

High Level Language
* C,Java, Python, Ruby, ...
* Loops, control flow, variables

Assembly Language
* No symbols (except labels)
* One operation per statement

Machine Language
* Binary-encoded assembly
* Labels become addresses

Machine Implementation

Instruction Usage

op=addi r0

Instructions are stored inf]

“191%1%

%% 44445 P 45545 %1%

memory, encoded in

090001/0001600011/00000/101010]

binary

A basic processor
* fetches
* decodes
* executes

one instruction at a time

addr(m

cur inst

pc

< >

decode
Cope D

regs

MIPS Design Principles
Simplicity favors regularity

* 32 bit instructions

Smaller is faster
* Small register file

Make the common case fast
* Include support for constants

Good design demands good compromises
» Support for different type of interpretations/classes

Instruction Types

Arithmetic

* add, subtract, shift left, shift right, multiply, divide
Memory

* load value from memory to a register

* store value to memory from a register
Control flow

* unconditional jumps

* conditional jumps (branches)

* jump and link (subroutine call)

Many other instructions are possible
* vector add/sub/mul/div, string operations
* manipulate coprocessor
* 1/0

Instruction Set Architecture

The types of operations permissible in machine language
define the ISA

* MIPS: load/store, arithmetic, control flow, ...
* VAX: load/store, arithmetic, control flow, strings, ...
* Cray: vector operations, ...
Two classes of ISAs
* Reduced Instruction Set Computers (RISC)
* Complex Instruction Set Computers (CISC)

We’ll study the MIPS ISA in this course

Instruction Set Architecture

Instruction Set Architecture (ISA)
» Different CPU architecture specifies different set of

instructions. Intel x86, IBM PowerPC, Sun Sparc, MIPS, etc.

MIPS (RISC)
* = 200 instructions, 32 bits each, 3 formats
* all operands in registers
* = 1 addressing mode: Mem|[reg + imm]
x86: Complex Instruction Set Computer (CISC)
* > 1000 instructions, 1 to 15 bytes each

* operands in special registers, general purpose registers,
memory, on stack, ...

— canbe 1, 2, 4, 8 bytes, signed or unsigned
* 10s of addressing modes
— e.g. Mem[segment + reg + reg*scale + offset]

21

Instructions

Load/store architecture
* Data must be in registers to be operated on
* Keeps hardware simple
Emphasis on efficient implementation
Integer data types:
* byte: 8 bits
* half-words: 16 bits
* words: 32 bits

MIPS supports signed and unsigned data types

MIPS instruction formats
All MIPS instructions are 32 bits long, has 3 formats

R-type op rs rt rd shamt func
6bits 5bits 5bits 5bits 5bits 6 bits

I-type op rs rt immediate
6 bits 5 bits 5 bits 16 bits
L | |

op immediate (target address)
6 bits 26 bits

J-type

23

MIPS Design Principles

Simplicity favors regularity
* 32 bitinstructions

Smaller is faster
* Small register file

Make the common case fast
* Include support for constants

Good design demands good compromises

» Support for different type of interpretations/classes of
instructions

Only 5 bits means that 32 offset. But need larger offset. So we go to having a 3" type
of instruction.

Takeaway

A MIPS processor and ISA (instruction set architecture) is an
example of a Reduced Instruction Set Computers (RISC)
where simplicity is key, thus enabling us to build it!!

25

Next Goal

How are instructions executed?
What is the general datapath to execute an instruction?

26

Instruction Usage

op=addi r0

Instructions are stored inf]

“191%1%

%% 44445 P 45545 %1%

memory, encoded in

090001/0001600011/00000/101010]

binary

A basic processor
* fetches
* decodes
* executes

one instruction at a time

addr(m

cur inst

pc

< >

decode
Cope D

regs

Five Stages of MIPS Datapath

Prog. linst e
] Reg. LU
Mem
File Data
1 . Mem
T3 / R
a
N
contro
_ Fetch . _ Decode _ _ Execute >€ Memorv> . ___WB o

A Single cycle processor

28

Five Stages of MIPS datapath

Basic CPU execution loop
1. Instruction Fetch
Instruction Decode
Execution (ALU)
Memory Access
Register Writeback

v b W N

Instruction types/format

* Arithmetic/Register: addu $s0, Ss2, Ss3
* Arithmetic/Immediate: slti $s0, Ss2, 4

* Memory: lw Ss0, 20(Ss3)

* Control/Jump: j Oxdeadbeef

Stages of datapath (1/5)

Stage 1: Instruction Fetch
* Fetch 32-bit instruction from memory
— Instruction cache or memory

* Increment PC accordingly
— 44, byte addressing

- N Prog. |inst
Mem

5
Coc]

4

Stages of datapath (1/5)

/Prog. inst 7
Mem Reg. §LU
_ File Data
1 Mem
_ Fetch Decode Execute . Memory WB

A Single cycle processor

Stages of datapath (2/5)

Stage 2: Instruction Decode
* Gather data from the instruction
* Read opcode to determine instruction type and field
length
* Read in data from register file
— E.g.for addu, read two registers

— E.g. for addi, read one register

— E.g.for jal, read no registers

Uiy

control

32

Stages of datapath (2/5)
All MIPS instructions are 32 bits long, has 3 formats

R-type op rs rt rd shamt func
6bits 5bits 5bits 5bits 5bits 6 bits

I-type op rs rt immediate
6 bits 5 bits 5 bits 16 bits
L | |

op immediate (target address)
6 bits 26 bits

J-type

33

Stages of datapath (2/5)

f«LU J
Data
1 Mem
_ Fetch ~ Decode Execute . Memory ~ WB

A Single cycle processor

34

Stages of datapath (3/5)

Stage 3: Execution (ALU)
» Useful work is done here (+, -, *, /), shift, logic
operation, comparison (slt).
* Load/Store?
- lw St2, 32(5t3)
— Compute the address of the memory

f‘LU

35

Stages of datapath (3/5)

Prog. linst ’/
Mern || Reg. LU

_ File Data

Mem
N \L1/,

I ~

N

contro
_ Fetch ~ Decode Execute __ Memory WB

A Single cycle processor

Stages of datapath (4/5)

Stage 4: Memory access

Used by load and store instructions only
Other instructions will skip this stage

Target addr
from ALU

If sw
Data to store >

from reg to mem
R/IW —

If lw

Data
Mem

Data from

memory
—>

37

Stages of datapath (4/5)

—
Prog. linst e
Mo Reg. ALY
“ File Data
\ Mem
T3 / R
A
N
contro
Fetch Decode Execute _ Memory WB

A Single cycle processor

38

Stages of datapath (5/5)

Stage 5:

* For instructions that need to write value to register
* Examples: arithmetic, logic, shift, etc., load

* Branches, jump??

WriteBack
from ALU Reg.
or Memory File

New instruction address
If branch or jump

39

Stages of datapath (5/5)

Prog. linst e J
B | — Reg_ LU
Mem ile a‘ Data
) Mem

4
\\ \\ /\ S
G KA
A
contro
_ Fetch Decode Execute . o Memory ~~ WB

—

Full Datapath

Prog. linst e J
Reg. LU
Mem
File Data
N
Mem
T3 /\ R
A
N
contro
Fetch Decode Execute _ Memory WwB

41

Takeaway

The datapath for a MIPS processor has five stages:
1. Instruction Fetch

Instruction Decode

Execution (ALU)

Memory Access

v b W N

Register Writeback

This five stage datapath is used to execute all MIPS
instructions

42

Next Goal
Specific datapaths for MIPS Instructions

43

Arithmetic/Logical
* R-type: result and two source registers, shift amount
* |-type: 16-bit immediate with sign/zero extension

Memory Access
* load/store between registers and memory
* word, half-word and byte operations

Control flow
* conditional branches: pc-relative addresses
* jumps: fixed offsets, register absolute

MIPS instruction formats
All MIPS instructions are 32 bits long, has 3 formats

R-type op rs rt rd shamt func
6bits 5bits 5bits 5bits 5bits 6 bits

I-type op rs rt immediate
6 bits 5 bits 5 bits 16 bits
L | |

op immediate (target address)
6 bits 26 bits

J-type

45

Arithmetic Instructions
IO@O@@Q@l@O@I@@l 1010@10019000911001 19I

op rs rt rd - func

6 bits 5 bits 5bits 5 bits 5 bits 6 bits

op func mnemonic description
0x0 0x21 ADDU rd, rs, rt R[rd] = R[rs] + R[rt]
0x0 0x23 SUBU rd, rs, rt R[rd] = R[rs] = R[rt]

0x0 0x25 ORrd, rs, rt R[rd] = R[rs] | R[rt]
@26 XORrd, rs, rt R[rd] = R[rs] @
0x0 0x27 NOR rd, rs rt R[rd] =~ (R[rs] | R[rt])

ex:rd=r8 ®r6 #XORr4,r8,r6

Arithmetic and Logic

r8
Prog. |inst ”
] Reg. LU

Mem r4)

File r6

xor

5['5]'5]

Es | xor
Fetch Decode R Execute _ Memory

skip

Arithmetic Instructions: Shift
Ieeeeeeleeeeelee1@@91@@@[@@1 10}@0@0@9|

op - rt rd shamt func

6 bits 5 bits 5bits 5 bits 5 bits 6 bits

op func mnemonic description

—O0xQ 0x0 SLL rd, rt, shamt R[rd] = R[rt] << shamt ___—
0x0 | 0x2 SRLrd, rt, shamt R[rd] = R[rt] >>> shamt (zero ext.)
0x0 | 0x3 SRArd, rt, shamt R[rd] = R[rt] >> shamt (sign ext.)

ex: r8 =r4 * 64 #SLLr8,r4,6
r8=r4<<6

Prog. |in:

Mem

Shift

r8

Y

\shamt

Reg.
File

rd

?LU

5|5/ 5

sll

sll shamt =6

