
Prof. Kavita Bala and Prof. Hakim Weatherspoon

CS 3410, Spring 2014

Computer Science

Cornell University

See P&H Appendix B.8 (register files) and B.9

Make sure to go to your Lab Section this week
Completed Lab1 due before winter break, Friday, Feb 14th
Note, a Design Document is due when you submit Lab1 final circuit
Work alone

Save your work!
• Save often. Verify file is non-zero. Periodically save to Dropbox, email.
• Beware of MacOSX 10.5 (leopard) and 10.6 (snow-leopard)

Homework1 is out
Due a week before prelim1, Monday, February 24th
Work on problems incrementally, as we cover them in lecture
Office Hours for help
Work alone

Work alone, BUT use your resources

• Lab Section, Piazza.com, Office Hours
• Class notes, book, Sections, CSUGLab

Check online syllabus/schedule

• http://www.cs.cornell.edu/Courses/CS3410/2014sp/schedule.html

Slides and Reading for lectures

Office Hours

Homework and Programming Assignments

Prelims (in evenings):
• Tuesday, March 4th

• Thursday, May 1th

Schedule is subject to change

“Black Board” Collaboration Policy
• Can discuss approach together on a “black board”
• Leave and write up solution independently
• Do not copy solutions

Late Policy
• Each person has a total of four “slip days”
• Max of two slip days for any individual assignment
• Slip days deducted first for any late assignment,
 cannot selectively apply slip days
• For projects, slip days are deducted from all partners
• 25% deducted per day late after slip days are exhausted

Regrade policy
• Submit written request to lead TA,
 and lead TA will pick a different grader
• Submit another written request,
 lead TA will regrade directly
• Submit yet another written request for professor to regrade.

PC

imm

memory

target

offset cmp control

=?

new

pc

memory

din dout

addr

register
file

inst

extend

+4 +4

A Single cycle processor

alu

Review

• Finite State Machines

Memory

• CPU: Register Files (i.e. Memory w/in the CPU)

• Scaling Memory: Tri-state devices

• Cache: SRAM (Static RAM—random access memory)

• Memory: DRAM (Dynamic RAM)

How do we store results from ALU computations?

How do we use stored results in subsequent
operations?

 Register File

How does a Register File work? How do we design it?

PC

imm

memory

target

offset cmp control

=?

new

pc

memory

din dout

addr

register
file

inst

extend

+4 +4

A Single cycle processor

alu

Register File

• N read/write registers

• Indexed by
register number

Dual-Read-Port
Single-Write-Port

32 x 32
Register File

QA

QB

DW

RW RA RB W

32

32

32

1 5 5 5

Register File tradeoffs

+ Very fast (a few gate delays for

 both read and write)

+ Adding extra ports is

 straightforward

– Doesn’t scale

 e.g. 32MB register file with

 32 bit registers

 Need 32x 1M-to-1 multiplexor

 and 32x 20-to-1M decoder

 How many logic gates/transistors?

a

b

c

d

e

f

g

h

s2 s1 s0

8-to-1 mux

Register files are very fast storage (only a few gate
delays), but does not scale to large memory sizes.

Memory

• CPU: Register Files (i.e. Memory w/in the CPU)

• Scaling Memory: Tri-state devices

• Cache: SRAM (Static RAM—random access memory)

• Memory: DRAM (Dynamic RAM)

How do we scale/build larger memories?

Need a shared bus (or shared bit line)

• Many FlipFlops/outputs/etc. connected to single wire

• Only one output drives the bus at a time

• How do we build such a device?

S0 D0

shared line

S1 D1 S2 D2 S3 D3 S1023 D1023

E

E D Q

0 0 z

0 1 z

1 0 0

1 1 1

D Q

Tri-State Buffers
• If enabled (E=1), then Q = D
• Otherwise, Q is not connected (z = high impedance)

Q

Vsupply

Gnd

D

E

E D Q

0 0 z

0 1 z

1 0 0

1 1 1

D Q

Tri-State Buffers
• If enabled (E=1), then Q = D
• Otherwise, Q is not connected (z = high impedance)

D
Q

E Vsupply

Gnd

E

E D Q

0 0 z

0 1 z

1 0 0

1 1 1

D Q

Tri-State Buffers
• If enabled (E=1), then Q = D
• Otherwise, Q is not connected (z = high impedance)

S0 D0

shared line

S1 D1 S2 D2 S3 D3 S1023 D1023

Register files are very fast storage (only a few gate
delays), but does not scale to large memory sizes.

Tri-state Buffers allow scaling since multiple
registers can be connected to a single output, while
only one register actually drives the output.

Memory

• CPU: Register Files (i.e. Memory w/in the CPU)

• Scaling Memory: Tri-state devices

• Cache: SRAM (Static RAM—random access memory)

• Memory: DRAM (Dynamic RAM)

How do we build large memories?

Use similar designs as Tri-state Buffers to connect
multiple registers to output line. Only one register
will drive output line.

Static RAM (SRAM)—Static Random Access Memory

• Essentially just D-Latches plus Tri-State Buffers

• A decoder selects which line of memory to access

 (i.e. word line)

• A R/W selector determines the

 type of access

• That line is then coupled to

 the data lines

Data

A
d

d
re

ss

D
ec

o
d

er

Static RAM (SRAM)—Static Random Access Memory

• Essentially just D-Latches plus Tri-State Buffers

• A decoder selects which line of memory to access

 (i.e. word line)

• A R/W selector determines the

 type of access

• That line is then coupled to

 the data lines

Din

8

Dout

8

22
Address

Chip Select

Write Enable
Output Enable

SRAM

4M x 8

E.g. How do we design
a 4 x 2 SRAM Module?

(i.e. 4 word lines that are
 each 2 bits wide)?

2-to-4
decoder

2
Address

D Q D Q

D Q D Q

D Q D Q

D Q D Q

Dout[1] Dout[2]

Din[1] Din[2]

enable enable

enable enable

enable enable

enable enable

0

1

2

3

Write Enable
Output Enable

4 x 2 SRAM

2-to-4
decoder

2
Address

D Q D Q

D Q D Q

D Q D Q

D Q D Q

Dout[1] Dout[2]

Din[1] Din[2]

enable enable

enable enable

enable enable

enable enable

0

1

2

3

Write Enable
Output Enable

E.g. How do we design
a 4 x 2 SRAM Module?

(i.e. 4 word lines that are
 each 2 bits wide)?

2-to-4
decoder

2
Address

D Q D Q

D Q D Q

D Q D Q

D Q D Q

Dout[1] Dout[2]

Din[1] Din[2]

enable enable

enable enable

enable enable

enable enable

0

1

2

3

Write Enable
Output Enable

Bit line

Word line

E.g. How do we design
a 4 x 2 SRAM Module?

(i.e. 4 word lines that are
 each 2 bits wide)?

2-to-4
decoder

2
Address

D Q D Q

D Q D Q

D Q D Q

D Q D Q

Dout[1] Dout[2]

Din[1] Din[2]

enable enable

enable enable

enable enable

enable enable

0

1

2

3

Write Enable
Output Enable

4 x 2 SRAM

E.g. How do we design
a 4 x 2 SRAM Module?

(i.e. 4 word lines that are
 each 2 bits wide)?

22
Address

Dout

Din

Write Enable
Output Enable

4M x 8 SRAM

8

8

E.g. How do we design
a 4M x 8 SRAM Module?

(i.e. 4M word lines that
are each 8 bits wide)?

Chip Select

12
Address [21-10]

4k x
 1024
SRAM

4k x
 1024
SRAM

4k x
 1024
SRAM

4k x
 1024
SRAM

4k x
 1024
SRAM

4k x
 1024
SRAM

4k x
 1024
SRAM

4k x
 1024
SRAM

12 x
 4096
decoder

mux

1024

mux

1024

mux

1024

mux

1024

mux mux

1024 1024

mux

1024

mux

1024

Dout[7]

1

Dout[6]

1

Dout[5]

1

Dout[4]

1

Dout[3]

1

Dout[2]

1

Dout[1]

1

Dout[0]

1

Address [9-0]

10

4M x 8 SRAM

E.g. How do we design
a 4M x 8 SRAM Module?

12
Address [21-10]

4k x
 1024
SRAM

4k x
 1024
SRAM

4k x
 1024
SRAM

4k x
 1024
SRAM

4k x
 1024
SRAM

4k x
 1024
SRAM

4k x
 1024
SRAM

4k x
 1024
SRAM

Row
decoder

1024 1024 1024 1024 1024 1024 1024 1024

Address [9-0]

10

4M x 8 SRAM

column selector, sense amp, and I/O circuits

Shared Data Bus

Chip Select (CS)

R/W Enable

8

E.g. How do we design
a 4M x 8 SRAM Module?

A21-0

Bank 2

Bank 3

Bank 4

4M x 8
SRAM

4M x 8
SRAM

4M x 8
SRAM

4M x 8
SRAM

R/W

msb lsb

CS

CS

CS

CS

SRAM

•A few transistors (~6) per cell

•Used for working memory (caches)

•But for even higher density…

Dynamic-RAM (DRAM)
• Data values require constant refresh

Gnd

word line b
it

 li
n

e

Capacitor

Each cell stores one bit, and requires 1 transistors

Single transistor vs. many gates
• Denser, cheaper ($30/1GB vs. $30/2MB)

• But more complicated, and has analog sensing

Also needs refresh
• Read and write back…

• …every few milliseconds

• Organized in 2D grid, so can do rows at a time

• Chip can do refresh internally

Hence… slower and energy inefficient

Register File tradeoffs
+ Very fast (a few gate delays for both read and write)
+ Adding extra ports is straightforward
– Expensive, doesn’t scale
– Volatile

Volatile Memory alternatives: SRAM, DRAM, …

– Slower
+ Cheaper, and scales well
– Volatile

Non-Volatile Memory (NV-RAM): Flash, EEPROM, …

+ Scales well
– Limited lifetime; degrades after 100000 to 1M writes

We now have enough building blocks to build
machines that can perform non-trivial
computational tasks

Register File: Tens of words of working memory

SRAM: Millions of words of working memory

DRAM: Billions of words of working memory

NVRAM: long term storage
 (usb fob, solid state disks, BIOS, …)

Next time we will build a simple processor!

