State and Finite State Machines

Prof. Kavita Bala and Prof. Hakim Weatherspoon
CS 3410, Spring 2014
Computer Science
Cornell University

See P&H Appendix B.7. B.§, B.10, B.11

Stateful Components
Until now is combinatorial logic

* Output is computed when inputs are present
e System has no internal state

* Nothing computed in the present can depend on
what happened in the past!

I(II S Comb.ma'.clonal > Outputs
circuit M

Inputs

Need a way to record data
Need a way to build stateful circuits

Need a state-holding device

Finite State Machines

Goals for Today
State

e How do we store one bit?

* Attempts at storing (and changing) one bit
— Set-Reset Latch
— D Latch
— D Flip-Flops
— Master-Slave Flip-Flops
* Register: storing more than one bit, N-bits

Basic Building Blocks
 Decoders and Encoders

Finite State Machines (FSM)

* How do we design logic circuits with state?
* Types of FSMs: Mealy and Moore Machines
* Examples: Serial Adder and a Digital Door Lock

Goal

How do we store store one bit?

First Attempt: Unstable Devices
B

Second Attempt: Bistable Devices

e Stable and unstable equilibria?

A B A Simple Device

Third Attempt: Set-Reset Latch

S I >0—7Q
o —o<C ¢

Can you store a value (with this circuit)?
Can you change its value?

Third Attempt: Set-Reset Latch

53>
Q_O@ R

Q| Q Set-Reset (S-R) Latch

Stores a value Q and its complement

OR | NOR

| = OO WBW
= O = O| X

Rl |[O[O]>»
R (Ol | O
= | ==]O
OO |O | K

Third Attempt: Set-Reset Latch

53> 0

Q_C@R

| = OO WBW

= O = O| X

Set-Reset (S-R) Latch

Stores a value Q and its complement

A|B|[OR | NOR
0(0(O0 1
O(1|1 0
1(0(1 0
11111 0

IELGENEL

Set-Reset (SR) Latch can store one bit and we can
change the value of the stored bit. But, SR Latch
has a forbidden state.

Next Goal
How do we avoid the forbidden state of S-R Latch?

Fourth Attempt: (Unclocked) D Latch

- >o-

S

Y

R

—) 0
a <&

Fill in the truth table?

gl

S
R

QF—
a_

Ol

NOR

Rl |[O[O]>»

R (O, | O]

R ==L]|O

OO0 |O |k

IELGENEL

Set-Reset (SR) Latch can store one bit and we can
change the value of the stored bit. But, SR Latch
has a forbidden state.

(Unclocked) D Latch can store and change a bit like
an SR Latch while avoiding the forbidden state.

Next Goal

How do we coordinate state changes to a D Latch?

Clocks

Clock helps coordinate state changes
* Usually generated by an oscillating crystal
* Fixed period; frequency = 1/period

clock

high _ rising
falling edge
edge

-~ clock \\
eriod clock

low

Clock Disciplines
Level sensitive
 State changes when clock is high (or low)

L

Edge triggered

* State changes at clock edge

positive edge-triggered ‘ ‘

negative edge-triggered

Clock Methodology
Clock Methodology

*Negative edge, synchronous

Cl k —‘ tcombinational thold ‘
<€
jsavel computd

— Edge-Triggered: Signals must be stable near falling clock edge

(o &

——w————

etup

i

*Positive edge synchronous

Fifth Attempt: D Latch with Clock

L.

Ol

Fifth Attempt: D Latch with Clock

D‘Lx Hs Q
clk Bali

@

=]

Fill in the truth table

ck| D Q| Q

= O O
1 O | = | O

Fifth Attempt: D Latch with Clock

D‘Lx Hs Q
clk Bali

. Q Fill in the truth table
SIRl Q| Q cdk | D| Q| Q
0|0] Q| Q |hold OO
O[1f O | 1 |reset 01
110l 1 | O | set 110
1|1| forbidden 111

Fifth Attempt: D Latch with Clock

Fill in the truth table

ek [L1ty al@
OO0

p 1 T

Q 1 10
1 | 1

Sixth Attempt: Edge-Triggered D Flip-Flop

1 0 0

DD QFyD QftQ
k—TL QD_;FL QHQ
=TS N I T S B

IELGENEL

Set-Reset (SR) Latch can store one bit and we can
change the value of the stored bit. But, SR Latch has a
forbidden state.

(Unclocked) D Latch can store and change a bit like an
SR Latch while avoiding a forbidden state.

An Edge-Triggered D Flip-Flip (aka Master-Slave D Flip-
Flip) stores one bit. The bit can be changed in a
synchronized fashion on the edge of a clock signal.

Next Goal

How do we store more than one bit, N bits?

> f 70

D1 ._“EI D

D3 ._“[I D

clk

Registers
Register

D flip-flops in parallel
*shared clock

*extra clocked inputs:
write _enable, reset, ...

4-bit
4 reg | 4
A

clk

IELGENEL

Set-Reset (SR) Latch can store one bit and we can
change the value of the stored bit. But, SR Latch has a
forbidden state.

(Unclocked) D Latch can store and change a bit like an
SR Latch while avoiding a forbidden state.

An Edge-Triggered D Flip-Flip (aka Master-Slave D Flip-
Flip) stores one bit. The bit can be changed in a
synchronized fashion on the edge of a clock signal.

An N-bit register stores N-bits. It is be created with N
D-Flip-Flops in parallel along with a shared clock.

An Example: What will this circuit do?

4
—“— Decoder
4 . |4
reg +1
]
Clk

Decoder Example: 7-Segment LED
7-Segment LED d7 d6 = d5 d4

* photons emitted when
electrons fall into
holes

LT
d3 d2 = d1 do

Decoder Example: 7-Segment LED Decoder

3 inputs

° encode0—-7in
binary

7LED decode

/ outputs
 one for each LED

7 Segment LED Decoder Implementation

o
N
(o
(WY
o
o

d6 | d5|d4 (d3|d2|dl | dO

= (=== 0O 0O O O

= (= O O = | = O O
= (O = O = O = O

7 Segment LED Decoder Implementation

1

1

1

1

1

1

O 0, 0|0|O0

1

0 0

1

1

00|00

1

1

1

1

1

0

1

b2 /bl b0|d6|d5|d4 |d3|(d2 dl|dO

0 0/0]1

0O/ 1/0{o0

1,0/ 0|1

101

11|01

Basic Building Blocks We have Seen

42" {:;m\
binary ——31
encoder $ N LZ S \
i N binary . E—ﬁ
decoder §
72N LZM-l

<

2\

Encoders

N Input wires —

encoder

Log,(N) outputs wires

e.g. Voting:
Can only vote for one out of N
candidates, so N inputs.

But can encode vote efficiently
with binary encoding.

Example Encoder Truth Table

a |b |c d
O |0 |O 0
1 1 |10 |0 0
0q O |1 |0 0
2 olo 1] 0
%8 1o fo o | 1
3 0,
4
A 3-bit
encoder
with 4 inputs

for simplicity

Basic Building Blocks Example: Voting

7LED
decode

N\N\N\NNNN
detect
(]
>
(@]

Ballots

The 3410 optical scan
vote reader
MEITE

Recap
We can now build interesting devices with sensors

* Using combinatorial logic

We can also store data values (aka Sequential Logic)
* |n state-holding elements
* Coupled with clocks

Administrivia
Make sure to go to your Lab Section this week
Completed Labl due before winter break, Friday, Feb 14th
Note, a Design Document is due when you submit Lab1 final circuit
Work alone

Homework1 is out

Due a week before preliml, Monday, February 24th

Work on problems incrementally, as we cover them in lecture
Office Hours for help

Work alone

Work alone, BUT use your resources
* Lab Section, Piazza.com, Office Hours
* Class notes, book, Sections, CSUGLab

Administrivia
Check online syllabus/schedule
 http://www.cs.cornell.edu/Courses/CS3410/2014sp/schedule.html
Slides and Reading for lectures
Office Hours

Homework and Programming Assignments
Prelims (in evenings):

e Tuesday, March 4t

* Thursday, May 1t

Schedule is subject to change

Collaboration, Late, Re-grading Policies

“Black Board” Collaboration Policy

« Can discuss approach together on a “black board”
« Leave and write up solution independently

« Do not copy solutions

Late Policy

- Each person has a total of four “slip days”

Max of two slip days for any individual assignment

Slip days deducted first for any late assignment,

cannot selectively apply slip days

For projects, slip days are deducted from all partners
25% deducted per day late after slip days are exhausted

Regrade policy
« Submit written request to lead TA,
and lead TA will pick a different grader
« Submit another written request,
lead TA will regrade directly
« Submit yet another written request for professor to regrade.

Goals for Today
State
* How do we store one bit?

* Attempts at storing (and changing) one bit
— Set-Reset Latch
— D Latch
— D Flip-Flops
— Master-Slave Flip-Flops
* Register: storing more than one bit, N-bits

Basic Building Blocks
 Decoders and Encoders

Finite State Machines (FSM)

* How do we design logic circuits with state?
* Types of FSMs: Mealy and Moore Machines
* Examples: Serial Adder and a Digital Door Lock

Finite State Machines

Next Goal

How do we design logic circuits with state?

Finite State Machines

An electronic machine which has
e external inputs
e externally visible outputs
* internal state

Output and next state depend on
* inputs
°* current state

Abstract Model of FSM

Machine is
M=(S, I, O o)
S: Finite set of states
[Finite set of inputs
O: Finite set of outputs
O: State transition function

Next state depends on present input and
present state

Automata Model
Finite State Machine

" Current Output
Q
N State S cOm.b.
Qgéo Logic
Al Input—s Next State

 inputs from external world
e outputs to external world
internal state

e combinational logic

FSM Example

down/on

input/output up/off down/on

CO— B

Legend up/off down/off
up/off
up/off
Input: up or down down/off

Output: on or off
States: A, B,C,orD

FSM Example

down/on

input/output up/off down/on

CO— B

Legend up/off down/off
up/off
up/off
Input: =up or = down down/off

Output: =on or = off
States: =A, =B, =C,or =D

FSM Exam Ie

igisiye../00,0,... % §
®.
Legend 0/0 0/0
CQ\)

Input: O=up or 1=down
Output: 1=on or 1=off
States: 00=A, 01=B, 10=C, or 11=D

Mealy Machine

General Case: Mealy Machine

., | Current
S Output
N State S Com.b.
;géﬂ Logic
Al Input—s Next State

Outputs and next state depend on both
current state and input

Moore Machine

Special Case: Moore Machine

. | Current Comb.
I3 State Logic /—> Output
> O ¢
;3; s/ Comb
A | Input—>_ Logic Next State

Outputs depend only on current state

Moore Machine FSM Example

down
Legend down
C iQ (&)

Input: up or down down

Output: on or off
States: A, B, C,orD

Mealy Machine FSM Example

down/on
input/output up/off I/ — :down/on
Legend up/off down/off
up/off D
up/off
Input: up or down down/off

Output: on or off
States: A, B, C,orD

\ctivity#2: Create a Logic Circuit for a Serial Adder

Add two infinite input bit streams

* streams are sent with least-significant-bit (Isb) first
* How many states are needed to represent FSM?
* Draw and Fill in FSM diagram

...10110

——...00101
..01111

Strategy:
(1) Draw a state diagram (e.g. Mealy Machine)

(2) Write output and next-state tables

(3) Encode states, inputs, and outputs as bits

(4) Determine logic equations for next state and outputs

FSM: State Diagram

...10110
——...00101

..01111

states:

Inputs: ??? and 77?7
Output: ???

FSM: State Diagram

...10110

..01111

states:

Inputs: ??? and 77?7
Output: ???

FSM: State Diagram

?

2?

Current| -

state

Next
state

(2) Write down all input and
state combinations

FSM: State Diagram

?

2?

Current| -

state

Next
state

(3) Encode states, inputs, and
outputs as bits

FSM: State Diagram

27?

27

Current
state

Next
state

(4) Determine logic equations for
next state and outputs

Summary

We can now build interesting devices with sensors

* Using combinational logic

We can also store data values
 Stateful circuit elements (D Flip Flops, Registers, ...)
* Clock to synchronize state changes
 State Machines or Ad-Hoc Circuits

