State and Finite State Machines

Prof. Kavita Bala and Prof. Hakim Weatherspoon
CS 3410, Spring 2014
Computer Science
Cornell University

See P&H Appendix B.7. B.§, B.10, B.11

Stateful Components

Until now is combinatorial logic
e Output is computed when inputs are present

e System has no internal state

* Nothing computed in the present can depend on
what happened in the past!

Inputs ~—> Combinational > Outputs
N circuit M
Need a way to record data
Need a way to build stateful circuits
Need a state-holding device

Finite State Machines

Goals for Today
State

e How do we store one bit?

e Attempts at storing (and changing) one bit
— Set-Reset Latch
— D Latch
— D Flip-Flops
— Master-Slave Flip-Flops
* Register: storing more than one bit, N-bits

Basic Building Blocks
 Decoders and Encoders

Finite State Machines (FSM)

* How do we design logic circuits with state?
* Types of FSMs: Mealy and Moore Machines
 Examples: Serial Adder and a Digital Door Lock

Goal

How do we store store one bit?

First Attempt: Unstable Devices
B

Second Attempt: Bistable Devices

e Stable and unstable equilibria?

A — — B A Simple Device

Third Attempt: Set-Reset Latch

S I >0—7Q
a o< g

Can you store a value (with this circuit)?
Can you change its value?

Third Attempt: Set-Reset Latch

S—5%Q
L,

S IR | Q|Q Set-Reset (S-R) Latch
0 o Stores a value Q and its complement
0 |1
A|B|OR |NOR
110 ojolo |1
1 |1 0oj1|1 |o
1|01 |0
1|11 |o

Third Attempt: Set-Reset Latch

S5 > Q
Q‘O@I R

Ol
I

—R

S IR | Q|Q Set-Reset (S-R) Latch
0 o Stores a value Q and its complement
0 |1
A|B|OR |NOR
110 ojolo |1
1 |1 0oj1|1 |o
1|01 |0
1|11 |o

Takeaway

Set-Reset (SR) Latch can store one bit and we can
change the value of the stored bit. But, SR Latch
has a forbidden state.

Next Goal
How do we avoid the forbidden state of S-R Latch?

Fourth Attempt: (Unclocked) D Latch

o

S

=

Fill in the truth table?

D_T S Q
So—-R Q
D Q|Q
1
A|B|OR | NOR
O[O0|O 1
0|11 0
1(0(1 0
1111 0

Takeaway

Set-Reset (SR) Latch can store one bit and we can
change the value of the stored bit. But, SR Latch
has a forbidden state.

(Unclocked) D Latch can store and change a bit like
an SR Latch while avoiding the forbidden state.

Next Goal

How do we coordinate state changes to a D Latch?

Clocks

Clock helps coordinate state changes
* Usually generated by an oscillating crystal
* Fixed period; frequency = 1/period

clock
high _ rising
falling edge
edge
g [A
0] -
clock
eriod clock

low

Clock Disciplines
Level sensitive
e State changes when clock is high (or low)

1L

Edge triggered

» State changes at clock edge

positive edge-triggered ‘ ‘
negative edge-triggered I

Clock Methodology
Clock Methodology

*Negative edge, synchronous

Clk | tcombinational t%etup thold
< >ie—+>
compute save compute save comput(

— Edge-Triggered: Signals must be stable near falling clock edge

*Positive edge synchronous

Fifth Attempt: D Latch with Clock

N

Ol

Fifth Attempt: D Latch with Clock

D_Lx Hs Q
clk Bali

o

Ol

Fill in the truth table

ck | D Q| Q

= (= O | O
= 1 O | = | O

Fifth Attempt: D Latch with Clock

D_Lx Hs Q
clk Bali

- Q Fill in the truth table
SIRl Q| Q ckiD[Q|Q
0|0] Q| Q |hold O | O
O|1] O | 1 |reset 0|1
110l 1 | O | set 1|0
1|1| forbidden 111

Fifth Attempt: D Latch with Clock

Fill in the truth table

[T T]fekipra
S)

o
= O |l=—= | OO0

Sixth Attempt: Edge-Triggered D Flip-Flop

1 0 0
p+1p oo akra
dk+HL QF B QHQ

>O—'c

Activity#1: Fill in timing graph and values for X and Q

cIk: ______________ Ij _____________ j _________________________________ T

Takeaway

Set-Reset (SR) Latch can store one bit and we can
change the value of the stored bit. But, SR Latch has a
forbidden state.

(Unclocked) D Latch can store and change a bit like an
SR Latch while avoiding a forbidden state.

An Edge-Triggered D Flip-Flip (aka Master-Slave D Flip-
Flip) stores one bit. The bit can be changed in a
synchronized fashion on the edge of a clock signal.

Next Goal

How do we store more than one bit, N bits?

DO

D1

D2

D3

cl

Registers
Register

D flip-flops in parallel
*shared clock

*extra clocked inputs:
write_enable, reset, ...

4-bit
4 reg | 4
A

clk

Takeaway

Set-Reset (SR) Latch can store one bit and we can
change the value of the stored bit. But, SR Latch has a
forbidden state.

(Unclocked) D Latch can store and change a bit like an
SR Latch while avoiding a forbidden state.

An Edge-Triggered D Flip-Flip (aka Master-Slave D Flip-
Flip) stores one bit. The bit can be changed in a
synchronized fashion on the edge of a clock signal.

An N-bit register stores N-bits. Itis be created with N
D-Flip-Flops in parallel along with a shared clock.

An Example: What will this circuit do?

\ &~
[HY
(@)}

Decoder 7>
4 . |4
reg "
]
Clk
//4

Decoder Example: 7-Segment LED
7-Segment LED d7 d6 = d5 d4

* photons emitted when
electrons fall into
holes

d3d2 = d1do

Decoder Example: 7-Segment LED Decoder

3 inputs

e encode0—-7in
binary

| ||
7LED decode

/ outputs
e one for each LED

7 Segment LED Decoder Implementation

o
N
o
=
o
o

d6|d5|d4|d3|d2|dl| dO

= === O 0O 0O O
= = O O = | = | O O
= O | = O = O = O

7 Segment LED Decoder Implementation

1

1

1

1

0

0

1

1

O 0,0 |0|O

1
1

0O O

1
1

O 000

b2 bl b0({d6 | d5|d4 |d3 d2|dl|dO

0 001

0 0|11

0/ 1/0]|0

01 1|1

1/0(0]|1

10|11

11|01
11|11

Basic Building Blocks We have Seen

42" v:::;m\
binary ——31 .
encoder i N Lz 5 \
i N binary . E-v;)
decoder : §
I

N Input wires

Encoders

encoder

Log,(N) outputs wires

e.g. Voting:
Can only vote for one out of N

candidates, so N inputs.

But can encode vote efficiently
with binary encoding.

Example Encoder Truth Table

a |b |c d
olo o | o
1 1 10 |o | o
| o, |01]0] 0O
2 olo 1| 0
— 9% o lo |o | 1

4

A 3-bit
encoder

with 4 inputs
for simplicity

Basic Building Blocks Example: Voting

—
7/

OO000000O
aVaYaVYaYaYaYa)

Ballots

The 3410 optical scan
vote reader

machine

Recap
We can now build interesting devices with sensors

* Using combinatorial logic

We can also store data values (aka Sequential Logic)
* |n state-holding elements
* Coupled with clocks

Administrivia
Make sure to go to your Lab Section this week
Completed Labl due before winter break, Friday, Feb 14th
Note, a Design Document is due when you submit Lab1 final circuit
Work alone

Homework1 is out

Due a week before preliml1, Monday, February 24th

Work on problems incrementally, as we cover them in lecture
Office Hours for help

Work alone

Work alone, BUT use your resources
e Lab Section, Piazza.com, Office Hours
e Class notes, book, Sections, CSUGLab

Administrivia
Check online syllabus/schedule

* http://www.cs.cornell.edu/Courses/CS3410/2014sp/schedule.html
Slides and Reading for lectures
Office Hours
Homework and Programming Assignments
Prelims (in evenings):
* Tuesday, March 4t
* Thursday, May 1t

Schedule is subject to change

Collaboration, Late, Re-grading Policies

“Black Board” Collaboration Policy

« Can discuss approach together on a “black board”
« Leave and write up solution independently

« Do not copy solutions

Late Policy
« Each person has a total of four “slip days”
« Max of two slip days for any individual assignment
« Slip days deducted first for any late assignment,
cannot selectively apply slip days
« For projects, slip days are deducted from all partners
« 25% deducted per day late after slip days are exhausted

Regrade policy
« Submit written request to lead TA,
and lead TA will pick a different grader
« Submit another written request,
lead TA will regrade directly
« Submit yet another written request for professor to regrade.

Goals for Today
State
* How do we store one bit?

e Attempts at storing (and changing) one bit
— Set-Reset Latch
— D Latch
— D Flip-Flops
— Master-Slave Flip-Flops
* Register: storing more than one bit, N-bits

Basic Building Blocks
 Decoders and Encoders

Finite State Machines (FSM)

* How do we design logic circuits with state?
* Types of FSMs: Mealy and Moore Machines
 Examples: Serial Adder and a Digital Door Lock

Finite State Machines

Next Goal

How do we design logic circuits with state?

Finite State Machines

An electronic machine which has
e external inputs
e externally visible outputs
* internal state

Output and next state depend on
* inputs
* current state

Abstract Model of FSM

Machine is
M=(S, I, O o)
S: Finite set of states
[Finite set of inputs
O: Finite set of outputs
O: State transition function

Next state depends on present input and
present state

Automata Model
Finite State Machine

" Current Output
)
| g State S cOm-b.
éﬂ Logic
Al Input—s Next State

* inputs from external world
e outputs to external world
internal state

* combinational logic

FSM Example

down/on

T\ down/on

oD

input/output up/off

CO.

Legend up/off down/off
up/off
up/off
Input: up or down down/off

Output: on or off
States: A, B, C,or D

FSM Example

down/on

T\ down/on

oD

input/output up/off

CO.

Legend up/off down/off
up/off
up/off
Input: =up or =down down/off

Output: =on or = off
States: = A, = B’ = C’ or =D

FSM Exam Ie

igigiye../040,0,... 0(/(—)? :]'/j
-
Legend 0/0
C :)
1/0

Input: O=up or 1=down
Output: 1=on or 1=off
States: 00=A, 01=B, 10=C, or 11=D

Mealy Machine

General Case: Mealy Machine

., | Current
g | state Comb. Output
> O > _
éﬂ Logic
Al Input—s Next State

Outputs and next state depend on both
current state and input

Moore Machine
Special Case: Moore Machine

., | Current Comb.
I3 State Logic /> Output
> b ¢
éo s/~ Comb. \——
A | Input—>_ Logic Next State

Outputs depend only on current state

Moore Machine FSM Example

down
input dOwn
Legend down
down

Input: up or down
Output: on or off
States: A, B, C,orD

Mealy Machine FSM Example

down/on
input/output up/off I down/on
Legend up/off down/off
up/off :>
up/off
Input: up or down down/off

Output: on or off
States: A, B, C,orD

A\ctivity#2: Create a Logic Circuit for a Serial Adder

Add two infinite input bit streams

* streams are sent with least-significant-bit (Isb) first
* How many states are needed to represent FSM?
 Draw and Fill in FSM diagram

..10110

——...00101
..01111

Strategy:
(1) Draw a state diagram (e.g. Mealy Machine)

(2) Write output and next-state tables

(3) Encode states, inputs, and outputs as bits

(4) Determine logic equations for next state and outputs

FSM: State Diagram

...10110

——...00101
..01111

states:

Inputs: ??? and ??7?
Output: ???

FSM: State Diagram

...10110

..01111

states:

Inputs: ??? and ??7?
Output: ???

FSM: State Diagram

77

?7?

Current |

State

Next
state

(2) Write down all input and
state combinations

FSM: State Diagram

77

?7?

Current |

State

Next
state

(3) Encode states, inputs, and
outputs as bits

FSM: State Diagram

77

?7?

Current
state

Next
state

(4) Determine logic equations for
next state and outputs

Summary

We can now build interesting devices with sensors

* Using combinational logic

We can also store data values
 Stateful circuit elements (D Flip Flops, Registers, ...)
* Clock to synchronize state changes
* State Machines or Ad-Hoc Circuits

